import gradio as gr from sentence_transformers import SentenceTransformer # Load the multilingual embedding model model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2') # Define a function to embed text def embed(text: str): if not text.strip(): return {"error": "Input text is empty."} embedding = model.encode([text])[0] # Get the embedding vector return {"embedding": embedding.tolist()} # Launch Gradio interface demo = gr.Interface( fn=embed, inputs=gr.Textbox(lines=3, label="Input Text"), outputs="json", title="Multilingual Text Embedder", description="Uses paraphrase-multilingual-MiniLM-L12-v2 to convert text into embeddings" ) demo.launch()