Spaces:
Runtime error
Runtime error
import os | |
from dotenv import load_dotenv | |
from supabase.client import create_client | |
from langgraph.graph import START, StateGraph, MessagesState | |
from langgraph.prebuilt import ToolNode, tools_condition | |
from langchain_core.tools import tool | |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
from langchain_google_genai import ChatGoogleGenerativeAI | |
from langchain_groq import ChatGroq | |
from langchain_huggingface import ( | |
ChatHuggingFace, | |
HuggingFaceEndpoint, | |
HuggingFaceEmbeddings, | |
) | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader | |
from langchain_community.vectorstores import SupabaseVectorStore | |
from langchain.tools.retriever import create_retriever_tool | |
load_dotenv() | |
def load_system_prompt(path: str = "system_prompt.txt") -> SystemMessage: | |
""" | |
Load system prompt from a file, fallback to a default if missing. | |
Args: | |
path: File path to the system prompt. | |
Returns: | |
SystemMessage containing the loaded or default prompt. | |
""" | |
try: | |
with open(path, encoding="utf-8") as f: | |
content = f.read() | |
except FileNotFoundError: | |
content = "You are a helpful assistant." | |
return SystemMessage(content=content) | |
def math_tool(func): | |
""" | |
Wrap a Python function as a LangChain tool. | |
Args: | |
func: Callable to wrap. | |
Returns: | |
A LangChain tool. | |
""" | |
return tool(func) | |
def add(a: int, b: int) -> int: | |
"""Return a + b.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Return a - b.""" | |
return a - b | |
def multiply(a: int, b: int) -> int: | |
"""Return a * b.""" | |
return a * b | |
def divide(a: int, b: int) -> float: | |
""" | |
Return a / b. | |
Raises: | |
ValueError: If b is zero. | |
""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Return a % b.""" | |
return a % b | |
def format_docs(docs, key: str, max_chars: int = None) -> dict: | |
""" | |
Convert document list into labeled XML-style chunks. | |
Args: | |
docs: Iterable of Document objects. | |
key: Dict key for formatted results. | |
max_chars: Optionally truncate content. | |
Returns: | |
{key: formatted_string} | |
""" | |
entries = [] | |
for d in docs: | |
content = d.page_content if max_chars is None else d.page_content[:max_chars] | |
entries.append( | |
f'<Document source="{d.metadata.get("source","")}" page="{d.metadata.get("page","")}">\n' | |
f"{content}\n</Document>" | |
) | |
return {key: "\n\n---\n\n".join(entries)} | |
def wiki_search(query: str) -> dict: | |
"""Search Wikipedia (2 docs) and format results.""" | |
docs = WikipediaLoader(query=query, load_max_docs=2).load() | |
return format_docs(docs, "wiki_results") | |
def web_search(query: str) -> dict: | |
"""Search the web via Tavily (3 docs) and format results.""" | |
docs = TavilySearchResults(max_results=3).invoke(query=query) | |
return format_docs(docs, "web_results") | |
def arxiv_search(query: str) -> dict: | |
"""Search ArXiv (3 docs) and format results (truncate to 1k chars).""" | |
docs = ArxivLoader(query=query, load_max_docs=3).load() | |
return format_docs(docs, "arxiv_results", max_chars=1000) | |
def build_vector_retriever(): | |
""" | |
Create and return a Supabase-based vector retriever. | |
Returns: | |
Retriever for semantic similarity queries. | |
""" | |
embed = HuggingFaceEmbeddings("sentence-transformers/all-mpnet-base-v2") | |
supa = create_client( | |
os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY") | |
) | |
store = SupabaseVectorStore( | |
client=supa, | |
embedding=embed, | |
table_name="documents", | |
query_name="match_documents_langchain", | |
) | |
return store.as_retriever() | |
def get_llm(provider: str = "google"): | |
""" | |
Factory to select and return an LLM client. | |
Args: | |
provider: One of "google", "groq", "huggingface". | |
Returns: | |
Configured LLM client. | |
Raises: | |
ValueError: On unsupported provider. | |
""" | |
if provider == "google": | |
return ChatGoogleGenerativeAI("gemini-2.0-flash", temperature=0) | |
if provider == "groq": | |
return ChatGroq("qwen-qwq-32b", temperature=0) | |
if provider == "huggingface": | |
return ChatHuggingFace( | |
llm=HuggingFaceEndpoint( | |
url="https://api-inference.huggingface.co/models/" | |
"Meta-DeepLearning/llama-2-7b-chat-hf", | |
temperature=0, | |
) | |
) | |
raise ValueError(f"Unsupported provider: {provider}") | |
def build_graph(provider: str = "google"): | |
""" | |
Build and compile a StateGraph for retrieval + LLM responses. | |
Args: | |
provider: LLM provider key. | |
Returns: | |
A compiled StateGraph. | |
""" | |
sys_msg = load_system_prompt() | |
retriever = build_vector_retriever() | |
question_tool = create_retriever_tool( | |
retriever=retriever, | |
name="Question Search", | |
description="Retrieve similar Q&A from vector store.", | |
) | |
tools = [ | |
add, | |
subtract, | |
multiply, | |
divide, | |
modulus, | |
wiki_search, | |
web_search, | |
arxiv_search, | |
question_tool, | |
] | |
llm = get_llm(provider).bind_tools(tools) | |
def retriever_node(state: MessagesState) -> dict: | |
""" | |
Node: retrieve most relevant doc and extract its answer. | |
""" | |
query = state["messages"][-1].content | |
doc = retriever.similarity_search(query, k=1)[0] | |
text = doc.page_content | |
ans = text.split("Final answer :")[-1].strip() if "Final answer :" in text else text | |
return {"messages": [AIMessage(content=ans)]} | |
def assistant_node(state: MessagesState) -> dict: | |
""" | |
Node: call LLM with system prompt + history. | |
""" | |
msgs = [sys_msg] + state["messages"] | |
resp = llm.invoke({"messages": msgs}) | |
return {"messages": [resp]} | |
graph = StateGraph(MessagesState) | |
graph.add_node("retriever", retriever_node) | |
graph.add_node("assistant", assistant_node) | |
graph.add_node("tools", ToolNode(tools)) | |
graph.add_edge(START, "retriever") | |
graph.add_edge("retriever", "assistant") | |
graph.add_conditional_edges("assistant", tools_condition) | |
graph.add_edge("tools", "assistant") | |
graph.set_entry_point("retriever") | |
graph.set_finish_point("assistant") | |
return graph.compile() |