Spaces:
Runtime error
Runtime error
Update agent.py
Browse files
agent.py
CHANGED
|
@@ -1,17 +1,14 @@
|
|
| 1 |
import os
|
|
|
|
| 2 |
from dotenv import load_dotenv
|
| 3 |
-
from supabase.client import create_client
|
| 4 |
from langgraph.graph import START, StateGraph, MessagesState
|
| 5 |
-
from langgraph.prebuilt import
|
| 6 |
from langchain_core.tools import tool
|
| 7 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 8 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 9 |
from langchain_groq import ChatGroq
|
| 10 |
-
from langchain_huggingface import
|
| 11 |
-
ChatHuggingFace,
|
| 12 |
-
HuggingFaceEndpoint,
|
| 13 |
-
HuggingFaceEmbeddings,
|
| 14 |
-
)
|
| 15 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 16 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
| 17 |
from langchain_community.vectorstores import SupabaseVectorStore
|
|
@@ -19,224 +16,173 @@ from langchain.tools.retriever import create_retriever_tool
|
|
| 19 |
|
| 20 |
load_dotenv()
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
Args:
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
Returns:
|
| 31 |
-
SystemMessage containing the loaded or default prompt.
|
| 32 |
"""
|
| 33 |
-
|
| 34 |
-
with open(path, encoding="utf-8") as f:
|
| 35 |
-
content = f.read()
|
| 36 |
-
except FileNotFoundError:
|
| 37 |
-
content = "You are a helpful assistant."
|
| 38 |
-
return SystemMessage(content=content)
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
def math_tool(func):
|
| 42 |
-
"""
|
| 43 |
-
Wrap a Python function as a LangChain tool.
|
| 44 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
Args:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
Returns:
|
| 49 |
-
A LangChain tool.
|
| 50 |
"""
|
| 51 |
-
return tool(func)
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
@math_tool
|
| 55 |
-
def add(a: int, b: int) -> int:
|
| 56 |
-
"""Return a + b."""
|
| 57 |
return a + b
|
| 58 |
|
| 59 |
-
|
| 60 |
-
@math_tool
|
| 61 |
def subtract(a: int, b: int) -> int:
|
| 62 |
-
"""
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def multiply(a: int, b: int) -> int:
|
| 68 |
-
"""Return a * b."""
|
| 69 |
-
return a * b
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
@math_tool
|
| 73 |
-
def divide(a: int, b: int) -> float:
|
| 74 |
"""
|
| 75 |
-
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
"""
|
| 80 |
if b == 0:
|
| 81 |
raise ValueError("Cannot divide by zero.")
|
| 82 |
return a / b
|
| 83 |
|
| 84 |
-
|
| 85 |
-
@math_tool
|
| 86 |
def modulus(a: int, b: int) -> int:
|
| 87 |
-
"""
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def format_docs(docs, key: str, max_chars: int = None) -> dict:
|
| 92 |
-
"""
|
| 93 |
-
Convert document list into labeled XML-style chunks.
|
| 94 |
-
|
| 95 |
Args:
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
max_chars: Optionally truncate content.
|
| 99 |
-
|
| 100 |
-
Returns:
|
| 101 |
-
{key: formatted_string}
|
| 102 |
"""
|
| 103 |
-
|
| 104 |
-
for d in docs:
|
| 105 |
-
content = d.page_content if max_chars is None else d.page_content[:max_chars]
|
| 106 |
-
entries.append(
|
| 107 |
-
f'<Document source="{d.metadata.get("source","")}" page="{d.metadata.get("page","")}">\n'
|
| 108 |
-
f"{content}\n</Document>"
|
| 109 |
-
)
|
| 110 |
-
return {key: "\n\n---\n\n".join(entries)}
|
| 111 |
-
|
| 112 |
|
| 113 |
@tool
|
| 114 |
-
def wiki_search(query: str) ->
|
| 115 |
-
"""Search Wikipedia
|
|
|
|
|
|
|
|
|
|
| 116 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 117 |
-
return
|
| 118 |
-
|
| 119 |
|
| 120 |
@tool
|
| 121 |
-
def web_search(query: str) ->
|
| 122 |
-
"""Search
|
|
|
|
|
|
|
|
|
|
| 123 |
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 124 |
-
return
|
| 125 |
-
|
| 126 |
|
| 127 |
@tool
|
| 128 |
-
def
|
| 129 |
-
"""Search
|
|
|
|
|
|
|
|
|
|
| 130 |
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 131 |
-
return
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
def build_vector_retriever():
|
| 135 |
-
"""
|
| 136 |
-
Create and return a Supabase-based vector retriever.
|
| 137 |
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
embed = HuggingFaceEmbeddings("sentence-transformers/all-mpnet-base-v2")
|
| 142 |
-
supa = create_client(
|
| 143 |
-
os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")
|
| 144 |
-
)
|
| 145 |
-
store = SupabaseVectorStore(
|
| 146 |
-
client=supa,
|
| 147 |
-
embedding=embed,
|
| 148 |
-
table_name="documents",
|
| 149 |
-
query_name="match_documents_langchain",
|
| 150 |
-
)
|
| 151 |
-
return store.as_retriever()
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
def get_llm(provider: str = "google"):
|
| 155 |
-
"""
|
| 156 |
-
Factory to select and return an LLM client.
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
)
|
| 179 |
-
|
| 180 |
-
|
| 181 |
|
| 182 |
-
|
|
|
|
| 183 |
"""
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
Args:
|
| 187 |
-
provider: LLM provider key.
|
| 188 |
-
|
| 189 |
-
Returns:
|
| 190 |
-
A compiled StateGraph.
|
| 191 |
"""
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
tools = [
|
| 201 |
-
add,
|
| 202 |
-
subtract,
|
| 203 |
-
multiply,
|
| 204 |
-
divide,
|
| 205 |
-
modulus,
|
| 206 |
-
wiki_search,
|
| 207 |
-
web_search,
|
| 208 |
-
arxiv_search,
|
| 209 |
-
question_tool,
|
| 210 |
-
]
|
| 211 |
llm = get_llm(provider).bind_tools(tools)
|
| 212 |
|
| 213 |
-
def
|
| 214 |
-
"""
|
| 215 |
-
|
| 216 |
-
|
|
|
|
| 217 |
query = state["messages"][-1].content
|
| 218 |
-
doc =
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
""
|
| 225 |
-
Node: call LLM with system prompt + history.
|
| 226 |
-
"""
|
| 227 |
-
msgs = [sys_msg] + state["messages"]
|
| 228 |
-
resp = llm.invoke({"messages": msgs})
|
| 229 |
-
return {"messages": [resp]}
|
| 230 |
|
| 231 |
graph = StateGraph(MessagesState)
|
| 232 |
-
graph.add_node("retriever",
|
| 233 |
-
graph.add_node("assistant", assistant_node)
|
| 234 |
-
graph.add_node("tools", ToolNode(tools))
|
| 235 |
-
graph.add_edge(START, "retriever")
|
| 236 |
-
graph.add_edge("retriever", "assistant")
|
| 237 |
-
graph.add_conditional_edges("assistant", tools_condition)
|
| 238 |
-
graph.add_edge("tools", "assistant")
|
| 239 |
graph.set_entry_point("retriever")
|
| 240 |
-
graph.set_finish_point("
|
| 241 |
-
|
| 242 |
-
return graph.compile()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import functools
|
| 3 |
from dotenv import load_dotenv
|
| 4 |
+
from supabase.client import create_client, Client
|
| 5 |
from langgraph.graph import START, StateGraph, MessagesState
|
| 6 |
+
from langgraph.prebuilt import tools_condition, ToolNode
|
| 7 |
from langchain_core.tools import tool
|
| 8 |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
| 9 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 10 |
from langchain_groq import ChatGroq
|
| 11 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 13 |
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
| 14 |
from langchain_community.vectorstores import SupabaseVectorStore
|
|
|
|
| 16 |
|
| 17 |
load_dotenv()
|
| 18 |
|
| 19 |
+
def _format_search_results(docs, label: str, truncate: int = None) -> dict:
|
| 20 |
+
"""Helper to format document search results."""
|
| 21 |
+
entries = []
|
| 22 |
+
for d in docs:
|
| 23 |
+
content = d.page_content if truncate is None else d.page_content[:truncate]
|
| 24 |
+
entries.append(
|
| 25 |
+
f'<Document source="{d.metadata.get("source","")}" '
|
| 26 |
+
f'page="{d.metadata.get("page","")}"/>\n{content}\n</Document>'
|
| 27 |
+
)
|
| 28 |
+
return {label: "\n\n---\n\n".join(entries)}
|
| 29 |
|
| 30 |
+
@tool
|
| 31 |
+
def multiply(a: int, b: int) -> int:
|
| 32 |
+
"""Multiply two numbers.
|
|
|
|
| 33 |
Args:
|
| 34 |
+
a: first int
|
| 35 |
+
b: second int
|
|
|
|
|
|
|
| 36 |
"""
|
| 37 |
+
return a * b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
@tool
|
| 40 |
+
def add(a: int, b: int) -> int:
|
| 41 |
+
"""Add two numbers.
|
| 42 |
+
|
| 43 |
Args:
|
| 44 |
+
a: first int
|
| 45 |
+
b: second int
|
|
|
|
|
|
|
| 46 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
return a + b
|
| 48 |
|
| 49 |
+
@tool
|
|
|
|
| 50 |
def subtract(a: int, b: int) -> int:
|
| 51 |
+
"""Subtract two numbers.
|
| 52 |
+
|
| 53 |
+
Args:
|
| 54 |
+
a: first int
|
| 55 |
+
b: second int
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
"""
|
| 57 |
+
return a - b
|
| 58 |
|
| 59 |
+
@tool
|
| 60 |
+
def divide(a: int, b: int) -> int:
|
| 61 |
+
"""Divide two numbers.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
a: first int
|
| 65 |
+
b: second int
|
| 66 |
"""
|
| 67 |
if b == 0:
|
| 68 |
raise ValueError("Cannot divide by zero.")
|
| 69 |
return a / b
|
| 70 |
|
| 71 |
+
@tool
|
|
|
|
| 72 |
def modulus(a: int, b: int) -> int:
|
| 73 |
+
"""Get the modulus of two numbers.
|
| 74 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
Args:
|
| 76 |
+
a: first int
|
| 77 |
+
b: second int
|
|
|
|
|
|
|
|
|
|
|
|
|
| 78 |
"""
|
| 79 |
+
return a % b
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
@tool
|
| 82 |
+
def wiki_search(query: str) -> str:
|
| 83 |
+
"""Search Wikipedia for a query and return maximum 2 results.
|
| 84 |
+
|
| 85 |
+
Args:
|
| 86 |
+
query: The search query."""
|
| 87 |
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
| 88 |
+
return _format_search_results(docs, "wiki_results")
|
|
|
|
| 89 |
|
| 90 |
@tool
|
| 91 |
+
def web_search(query: str) -> str:
|
| 92 |
+
"""Search Tavily for a query and return maximum 3 results.
|
| 93 |
+
|
| 94 |
+
Args:
|
| 95 |
+
query: The search query."""
|
| 96 |
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
| 97 |
+
return _format_search_results(docs, "web_results")
|
|
|
|
| 98 |
|
| 99 |
@tool
|
| 100 |
+
def arvix_search(query: str) -> str:
|
| 101 |
+
"""Search Arxiv for a query and return maximum 3 result.
|
| 102 |
+
|
| 103 |
+
Args:
|
| 104 |
+
query: The search query."""
|
| 105 |
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
| 106 |
+
return _format_search_results(docs, "arvix_results", truncate=1000)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
+
# load the system prompt from the file
|
| 109 |
+
with open("system_prompt.txt", "r", encoding="utf-8") as f:
|
| 110 |
+
system_prompt = f.read()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
+
# System message
|
| 113 |
+
sys_msg = SystemMessage(content=system_prompt)
|
| 114 |
|
| 115 |
+
# build a retriever once
|
| 116 |
+
_embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
| 117 |
+
_supabase: Client = create_client(
|
| 118 |
+
os.environ["SUPABASE_URL"], os.environ["SUPABASE_SERVICE_KEY"]
|
| 119 |
+
)
|
| 120 |
+
_vector_store = SupabaseVectorStore(
|
| 121 |
+
client=_supabase,
|
| 122 |
+
embedding=_embeddings,
|
| 123 |
+
table_name="documents",
|
| 124 |
+
query_name="match_documents_langchain",
|
| 125 |
+
)
|
| 126 |
+
_retriever = _vector_store.as_retriever()
|
| 127 |
+
_question_search_tool = create_retriever_tool(
|
| 128 |
+
retriever=_retriever,
|
| 129 |
+
name="Question Search",
|
| 130 |
+
description="A tool to retrieve similar questions from a vector store.",
|
| 131 |
+
)
|
| 132 |
|
| 133 |
+
tools = [
|
| 134 |
+
multiply,
|
| 135 |
+
add,
|
| 136 |
+
subtract,
|
| 137 |
+
divide,
|
| 138 |
+
modulus,
|
| 139 |
+
wiki_search,
|
| 140 |
+
web_search,
|
| 141 |
+
arvix_search,
|
| 142 |
+
_question_search_tool,
|
| 143 |
+
]
|
| 144 |
+
|
| 145 |
+
_LLM_PROVIDERS = {
|
| 146 |
+
"google": lambda: ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0),
|
| 147 |
+
"groq": lambda: ChatGroq(model="qwen-qwq-32b", temperature=0),
|
| 148 |
+
"huggingface": lambda: ChatHuggingFace(
|
| 149 |
+
llm=HuggingFaceEndpoint(
|
| 150 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
| 151 |
+
temperature=0,
|
| 152 |
)
|
| 153 |
+
),
|
| 154 |
+
}
|
| 155 |
|
| 156 |
+
@functools.lru_cache(maxsize=None)
|
| 157 |
+
def get_llm(provider: str):
|
| 158 |
"""
|
| 159 |
+
Retrieve and cache the LLM client for the given provider.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
"""
|
| 161 |
+
try:
|
| 162 |
+
return _LLM_PROVIDERS[provider]()
|
| 163 |
+
except KeyError:
|
| 164 |
+
raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.")
|
| 165 |
+
|
| 166 |
+
def build_graph(provider: str = "google"):
|
| 167 |
+
"""Build the graph"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
llm = get_llm(provider).bind_tools(tools)
|
| 169 |
|
| 170 |
+
def assistant(state: MessagesState):
|
| 171 |
+
"""Assistant node"""
|
| 172 |
+
return {"messages": [llm.invoke(state["messages"])]}
|
| 173 |
+
|
| 174 |
+
def retriever(state: MessagesState):
|
| 175 |
query = state["messages"][-1].content
|
| 176 |
+
doc = _retriever.similarity_search(query, k=1)[0]
|
| 177 |
+
content = doc.page_content
|
| 178 |
+
if "Final answer :" in content:
|
| 179 |
+
answer = content.split("Final answer :")[-1].strip()
|
| 180 |
+
else:
|
| 181 |
+
answer = content.strip()
|
| 182 |
+
return {"messages": [AIMessage(content=answer)]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
graph = StateGraph(MessagesState)
|
| 185 |
+
graph.add_node("retriever", retriever)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
graph.set_entry_point("retriever")
|
| 187 |
+
graph.set_finish_point("retriever")
|
| 188 |
+
return graph.compile()
|
|
|