Irfshaikh commited on
Commit
588b982
·
verified ·
1 Parent(s): 404278e

Create agent.py

Browse files
Files changed (1) hide show
  1. agent.py +138 -0
agent.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from langgraph.graph import START, StateGraph, MessagesState
4
+ from langgraph.prebuilt import ToolNode, tools_condition
5
+ from langchain_core.tools import tool
6
+ from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
7
+ from langchain_google_genai import ChatGoogleGenerativeAI
8
+ from langchain_groq import ChatGroq
9
+ from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
10
+ from langchain_community.tools.tavily_search import TavilySearchResults
11
+ from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
12
+ from langchain_community.vectorstores import SupabaseVectorStore
13
+ from langchain.tools.retriever import create_retriever_tool
14
+ from supabase.client import create_client
15
+
16
+ load_dotenv()
17
+
18
+ # --- System Prompt Loader ---
19
+ def load_system_prompt(path="system_prompt.txt") -> SystemMessage:
20
+ try:
21
+ with open(path, encoding="utf-8") as f:
22
+ return SystemMessage(content=f.read())
23
+ except FileNotFoundError:
24
+ return SystemMessage(content="You are a helpful assistant.")
25
+
26
+ sys_msg = load_system_prompt()
27
+
28
+ # --- Math Tools Factory ---
29
+ def math_tool(fn):
30
+ return tool(fn)
31
+
32
+ @math_tool
33
+ def add(a: int, b: int) -> int: return a + b
34
+ @math_tool
35
+ def subtract(a: int, b: int) -> int: return a - b
36
+ @math_tool
37
+ def multiply(a: int, b: int) -> int: return a * b
38
+ @math_tool
39
+ def divide(a: int, b: int) -> float:
40
+ if b == 0: raise ValueError("Cannot divide by zero.")
41
+ return a / b
42
+
43
+ @math_tool
44
+ def modulus(a: int, b: int) -> int: return a % b
45
+
46
+ # --- Document Formatting Helper ---
47
+ def format_docs(docs, key: str, max_chars: int = None) -> dict:
48
+ content = "\n\n---\n\n".join(
49
+ f'<Document source="{d.metadata.get("source","")}" page="{d.metadata.get("page","")}" />\n'
50
+ f'{d.page_content[:max_chars] if max_chars else d.page_content}\n</Document>'
51
+ for d in docs
52
+ )
53
+ return {key: content}
54
+
55
+ # --- Info Tools ---
56
+ @tool
57
+ def wiki_search(query: str) -> dict:
58
+ docs = WikipediaLoader(query=query, load_max_docs=2).load()
59
+ return format_docs(docs, "wiki_results")
60
+
61
+ @tool
62
+ def web_search(query: str) -> dict:
63
+ docs = TavilySearchResults(max_results=3).invoke(query=query)
64
+ return format_docs(docs, "web_results")
65
+
66
+ @tool
67
+ def arvix_search(query: str) -> dict:
68
+ docs = ArxivLoader(query=query, load_max_docs=3).load()
69
+ return format_docs(docs, "arvix_results", max_chars=1000)
70
+
71
+ # --- Vector Retriever Setup ---
72
+ def build_vector_retriever():
73
+ embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
74
+ supa = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
75
+ vs = SupabaseVectorStore(
76
+ client=supa,
77
+ embedding=embed_model,
78
+ table_name="documents",
79
+ query_name="match_documents_langchain"
80
+ )
81
+ return vs.as_retriever()
82
+
83
+ # --- LLM Factory ---
84
+ def get_llm(provider: str):
85
+ if provider == "google":
86
+ return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
87
+ if provider == "groq":
88
+ return ChatGroq(model="qwen-qwq-32b", temperature=0)
89
+ if provider == "huggingface":
90
+ return ChatHuggingFace(llm=HuggingFaceEndpoint(
91
+ url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
92
+ temperature=0))
93
+ raise ValueError(f"Unsupported provider: {provider}")
94
+
95
+ # --- Build Graph ---
96
+ def build_graph(provider: str = "google"):
97
+ # tools list
98
+ retriever = build_vector_retriever()
99
+ question_tool = create_retriever_tool(
100
+ retriever=retriever,
101
+ name="Question Search",
102
+ description="Retrieve similar Q&A from vector store"
103
+ )
104
+ tools = [
105
+ add, subtract, multiply, divide, modulus,
106
+ wiki_search, web_search, arvix_search,
107
+ question_tool
108
+ ]
109
+
110
+ # LLM w/ tools
111
+ llm = get_llm(provider).bind_tools(tools)
112
+
113
+ # Nodes
114
+ def assistant(state: MessagesState):
115
+ msgs = [sys_msg] + state["messages"]
116
+ resp = llm.invoke({"messages": msgs})
117
+ return {"messages": [resp]}
118
+
119
+ def retriever_node(state: MessagesState):
120
+ query = state["messages"][-1].content
121
+ doc = retriever.similarity_search(query, k=1)[0]
122
+ text = doc.page_content
123
+ answer = text.split("Final answer :")[-1].strip() if "Final answer :" in text else text
124
+ return {"messages": [AIMessage(content=answer)]}
125
+
126
+ # Graph assembly
127
+ graph = StateGraph(MessagesState)
128
+ graph.add_node("retriever", retriever_node)
129
+ graph.add_node("assistant", assistant)
130
+ graph.add_node("tools", ToolNode(tools))
131
+ graph.add_edge(START, "retriever")
132
+ graph.add_edge("retriever", "assistant")
133
+ graph.add_conditional_edges("assistant", tools_condition)
134
+ graph.add_edge("tools", "assistant")
135
+ graph.set_entry_point("retriever")
136
+ graph.set_finish_point("assistant")
137
+
138
+ return graph.compile()