Spaces:
Runtime error
Runtime error
Create agent.py
Browse files
agent.py
ADDED
@@ -0,0 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from dotenv import load_dotenv
|
3 |
+
from langgraph.graph import START, StateGraph, MessagesState
|
4 |
+
from langgraph.prebuilt import ToolNode, tools_condition
|
5 |
+
from langchain_core.tools import tool
|
6 |
+
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langchain_groq import ChatGroq
|
9 |
+
from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings
|
10 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
11 |
+
from langchain_community.document_loaders import WikipediaLoader, ArxivLoader
|
12 |
+
from langchain_community.vectorstores import SupabaseVectorStore
|
13 |
+
from langchain.tools.retriever import create_retriever_tool
|
14 |
+
from supabase.client import create_client
|
15 |
+
|
16 |
+
load_dotenv()
|
17 |
+
|
18 |
+
# --- System Prompt Loader ---
|
19 |
+
def load_system_prompt(path="system_prompt.txt") -> SystemMessage:
|
20 |
+
try:
|
21 |
+
with open(path, encoding="utf-8") as f:
|
22 |
+
return SystemMessage(content=f.read())
|
23 |
+
except FileNotFoundError:
|
24 |
+
return SystemMessage(content="You are a helpful assistant.")
|
25 |
+
|
26 |
+
sys_msg = load_system_prompt()
|
27 |
+
|
28 |
+
# --- Math Tools Factory ---
|
29 |
+
def math_tool(fn):
|
30 |
+
return tool(fn)
|
31 |
+
|
32 |
+
@math_tool
|
33 |
+
def add(a: int, b: int) -> int: return a + b
|
34 |
+
@math_tool
|
35 |
+
def subtract(a: int, b: int) -> int: return a - b
|
36 |
+
@math_tool
|
37 |
+
def multiply(a: int, b: int) -> int: return a * b
|
38 |
+
@math_tool
|
39 |
+
def divide(a: int, b: int) -> float:
|
40 |
+
if b == 0: raise ValueError("Cannot divide by zero.")
|
41 |
+
return a / b
|
42 |
+
|
43 |
+
@math_tool
|
44 |
+
def modulus(a: int, b: int) -> int: return a % b
|
45 |
+
|
46 |
+
# --- Document Formatting Helper ---
|
47 |
+
def format_docs(docs, key: str, max_chars: int = None) -> dict:
|
48 |
+
content = "\n\n---\n\n".join(
|
49 |
+
f'<Document source="{d.metadata.get("source","")}" page="{d.metadata.get("page","")}" />\n'
|
50 |
+
f'{d.page_content[:max_chars] if max_chars else d.page_content}\n</Document>'
|
51 |
+
for d in docs
|
52 |
+
)
|
53 |
+
return {key: content}
|
54 |
+
|
55 |
+
# --- Info Tools ---
|
56 |
+
@tool
|
57 |
+
def wiki_search(query: str) -> dict:
|
58 |
+
docs = WikipediaLoader(query=query, load_max_docs=2).load()
|
59 |
+
return format_docs(docs, "wiki_results")
|
60 |
+
|
61 |
+
@tool
|
62 |
+
def web_search(query: str) -> dict:
|
63 |
+
docs = TavilySearchResults(max_results=3).invoke(query=query)
|
64 |
+
return format_docs(docs, "web_results")
|
65 |
+
|
66 |
+
@tool
|
67 |
+
def arvix_search(query: str) -> dict:
|
68 |
+
docs = ArxivLoader(query=query, load_max_docs=3).load()
|
69 |
+
return format_docs(docs, "arvix_results", max_chars=1000)
|
70 |
+
|
71 |
+
# --- Vector Retriever Setup ---
|
72 |
+
def build_vector_retriever():
|
73 |
+
embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
|
74 |
+
supa = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY"))
|
75 |
+
vs = SupabaseVectorStore(
|
76 |
+
client=supa,
|
77 |
+
embedding=embed_model,
|
78 |
+
table_name="documents",
|
79 |
+
query_name="match_documents_langchain"
|
80 |
+
)
|
81 |
+
return vs.as_retriever()
|
82 |
+
|
83 |
+
# --- LLM Factory ---
|
84 |
+
def get_llm(provider: str):
|
85 |
+
if provider == "google":
|
86 |
+
return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0)
|
87 |
+
if provider == "groq":
|
88 |
+
return ChatGroq(model="qwen-qwq-32b", temperature=0)
|
89 |
+
if provider == "huggingface":
|
90 |
+
return ChatHuggingFace(llm=HuggingFaceEndpoint(
|
91 |
+
url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf",
|
92 |
+
temperature=0))
|
93 |
+
raise ValueError(f"Unsupported provider: {provider}")
|
94 |
+
|
95 |
+
# --- Build Graph ---
|
96 |
+
def build_graph(provider: str = "google"):
|
97 |
+
# tools list
|
98 |
+
retriever = build_vector_retriever()
|
99 |
+
question_tool = create_retriever_tool(
|
100 |
+
retriever=retriever,
|
101 |
+
name="Question Search",
|
102 |
+
description="Retrieve similar Q&A from vector store"
|
103 |
+
)
|
104 |
+
tools = [
|
105 |
+
add, subtract, multiply, divide, modulus,
|
106 |
+
wiki_search, web_search, arvix_search,
|
107 |
+
question_tool
|
108 |
+
]
|
109 |
+
|
110 |
+
# LLM w/ tools
|
111 |
+
llm = get_llm(provider).bind_tools(tools)
|
112 |
+
|
113 |
+
# Nodes
|
114 |
+
def assistant(state: MessagesState):
|
115 |
+
msgs = [sys_msg] + state["messages"]
|
116 |
+
resp = llm.invoke({"messages": msgs})
|
117 |
+
return {"messages": [resp]}
|
118 |
+
|
119 |
+
def retriever_node(state: MessagesState):
|
120 |
+
query = state["messages"][-1].content
|
121 |
+
doc = retriever.similarity_search(query, k=1)[0]
|
122 |
+
text = doc.page_content
|
123 |
+
answer = text.split("Final answer :")[-1].strip() if "Final answer :" in text else text
|
124 |
+
return {"messages": [AIMessage(content=answer)]}
|
125 |
+
|
126 |
+
# Graph assembly
|
127 |
+
graph = StateGraph(MessagesState)
|
128 |
+
graph.add_node("retriever", retriever_node)
|
129 |
+
graph.add_node("assistant", assistant)
|
130 |
+
graph.add_node("tools", ToolNode(tools))
|
131 |
+
graph.add_edge(START, "retriever")
|
132 |
+
graph.add_edge("retriever", "assistant")
|
133 |
+
graph.add_conditional_edges("assistant", tools_condition)
|
134 |
+
graph.add_edge("tools", "assistant")
|
135 |
+
graph.set_entry_point("retriever")
|
136 |
+
graph.set_finish_point("assistant")
|
137 |
+
|
138 |
+
return graph.compile()
|