import os from dotenv import load_dotenv from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import ToolNode, tools_condition from langchain_core.tools import tool from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain.tools.retriever import create_retriever_tool from supabase.client import create_client load_dotenv() # --- System Prompt Loader --- def load_system_prompt(path="system_prompt.txt") -> SystemMessage: try: with open(path, encoding="utf-8") as f: return SystemMessage(content=f.read()) except FileNotFoundError: return SystemMessage(content="You are a helpful assistant.") sys_msg = load_system_prompt() # --- Math Tools Factory --- def math_tool(fn): return tool(fn) @math_tool def add(a: int, b: int) -> int: return a + b @math_tool def subtract(a: int, b: int) -> int: return a - b @math_tool def multiply(a: int, b: int) -> int: return a * b @math_tool def divide(a: int, b: int) -> float: if b == 0: raise ValueError("Cannot divide by zero.") return a / b @math_tool def modulus(a: int, b: int) -> int: return a % b # --- Document Formatting Helper --- def format_docs(docs, key: str, max_chars: int = None) -> dict: content = "\n\n---\n\n".join( f'\n' f'{d.page_content[:max_chars] if max_chars else d.page_content}\n' for d in docs ) return {key: content} # --- Info Tools --- @tool def wiki_search(query: str) -> dict: docs = WikipediaLoader(query=query, load_max_docs=2).load() return format_docs(docs, "wiki_results") @tool def web_search(query: str) -> dict: docs = TavilySearchResults(max_results=3).invoke(query=query) return format_docs(docs, "web_results") @tool def arvix_search(query: str) -> dict: docs = ArxivLoader(query=query, load_max_docs=3).load() return format_docs(docs, "arvix_results", max_chars=1000) # --- Vector Retriever Setup --- def build_vector_retriever(): embed_model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") supa = create_client(os.getenv("SUPABASE_URL"), os.getenv("SUPABASE_SERVICE_KEY")) vs = SupabaseVectorStore( client=supa, embedding=embed_model, table_name="documents", query_name="match_documents_langchain" ) return vs.as_retriever() # --- LLM Factory --- def get_llm(provider: str): if provider == "google": return ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0) if provider == "groq": return ChatGroq(model="qwen-qwq-32b", temperature=0) if provider == "huggingface": return ChatHuggingFace(llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0)) raise ValueError(f"Unsupported provider: {provider}") # --- Build Graph --- def build_graph(provider: str = "google"): # tools list retriever = build_vector_retriever() question_tool = create_retriever_tool( retriever=retriever, name="Question Search", description="Retrieve similar Q&A from vector store" ) tools = [ add, subtract, multiply, divide, modulus, wiki_search, web_search, arvix_search, question_tool ] # LLM w/ tools llm = get_llm(provider).bind_tools(tools) # Nodes def assistant(state: MessagesState): msgs = [sys_msg] + state["messages"] resp = llm.invoke({"messages": msgs}) return {"messages": [resp]} def retriever_node(state: MessagesState): query = state["messages"][-1].content doc = retriever.similarity_search(query, k=1)[0] text = doc.page_content answer = text.split("Final answer :")[-1].strip() if "Final answer :" in text else text return {"messages": [AIMessage(content=answer)]} # Graph assembly graph = StateGraph(MessagesState) graph.add_node("retriever", retriever_node) graph.add_node("assistant", assistant) graph.add_node("tools", ToolNode(tools)) graph.add_edge(START, "retriever") graph.add_edge("retriever", "assistant") graph.add_conditional_edges("assistant", tools_condition) graph.add_edge("tools", "assistant") graph.set_entry_point("retriever") graph.set_finish_point("assistant") return graph.compile()