import os import functools from dotenv import load_dotenv from supabase.client import create_client, Client from langgraph.graph import START, StateGraph, MessagesState from langgraph.prebuilt import tools_condition, ToolNode from langchain_core.tools import tool from langchain_core.messages import SystemMessage, HumanMessage, AIMessage from langchain_google_genai import ChatGoogleGenerativeAI from langchain_groq import ChatGroq from langchain_huggingface import ChatHuggingFace, HuggingFaceEndpoint, HuggingFaceEmbeddings from langchain_community.tools.tavily_search import TavilySearchResults from langchain_community.document_loaders import WikipediaLoader, ArxivLoader from langchain_community.vectorstores import SupabaseVectorStore from langchain.tools.retriever import create_retriever_tool load_dotenv() def _format_search_results(docs, label: str, truncate: int = None) -> dict: """Helper to format document search results.""" entries = [] for d in docs: content = d.page_content if truncate is None else d.page_content[:truncate] entries.append( f'\n{content}\n' ) return {label: "\n\n---\n\n".join(entries)} @tool def multiply(a: int, b: int) -> int: """Multiply two numbers. Args: a: first int b: second int """ return a * b @tool def add(a: int, b: int) -> int: """Add two numbers. Args: a: first int b: second int """ return a + b @tool def subtract(a: int, b: int) -> int: """Subtract two numbers. Args: a: first int b: second int """ return a - b @tool def divide(a: int, b: int) -> int: """Divide two numbers. Args: a: first int b: second int """ if b == 0: raise ValueError("Cannot divide by zero.") return a / b @tool def modulus(a: int, b: int) -> int: """Get the modulus of two numbers. Args: a: first int b: second int """ return a % b @tool def wiki_search(query: str) -> str: """Search Wikipedia for a query and return maximum 2 results. Args: query: The search query.""" docs = WikipediaLoader(query=query, load_max_docs=2).load() return _format_search_results(docs, "wiki_results") @tool def web_search(query: str) -> str: """Search Tavily for a query and return maximum 3 results. Args: query: The search query.""" docs = TavilySearchResults(max_results=3).invoke(query=query) return _format_search_results(docs, "web_results") @tool def arvix_search(query: str) -> str: """Search Arxiv for a query and return maximum 3 result. Args: query: The search query.""" docs = ArxivLoader(query=query, load_max_docs=3).load() return _format_search_results(docs, "arvix_results", truncate=1000) # load the system prompt from the file with open("system_prompt.txt", "r", encoding="utf-8") as f: system_prompt = f.read() # System message sys_msg = SystemMessage(content=system_prompt) # build a retriever once _embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2") _supabase: Client = create_client( os.environ["SUPABASE_URL"], os.environ["SUPABASE_SERVICE_KEY"] ) _vector_store = SupabaseVectorStore( client=_supabase, embedding=_embeddings, table_name="documents", query_name="match_documents_langchain", ) _retriever = _vector_store.as_retriever() _question_search_tool = create_retriever_tool( retriever=_retriever, name="Question Search", description="A tool to retrieve similar questions from a vector store.", ) tools = [ multiply, add, subtract, divide, modulus, wiki_search, web_search, arvix_search, _question_search_tool, ] _LLM_PROVIDERS = { "google": lambda: ChatGoogleGenerativeAI(model="gemini-2.0-flash", temperature=0), "groq": lambda: ChatGroq(model="qwen-qwq-32b", temperature=0), "huggingface": lambda: ChatHuggingFace( llm=HuggingFaceEndpoint( url="https://api-inference.huggingface.co/models/Meta-DeepLearning/llama-2-7b-chat-hf", temperature=0, ) ), } @functools.lru_cache(maxsize=None) def get_llm(provider: str): """ Retrieve and cache the LLM client for the given provider. """ try: return _LLM_PROVIDERS[provider]() except KeyError: raise ValueError("Invalid provider. Choose 'google', 'groq' or 'huggingface'.") def build_graph(provider: str = "google"): """Build the graph""" llm = get_llm(provider).bind_tools(tools) def assistant(state: MessagesState): """Assistant node""" return {"messages": [llm.invoke(state["messages"])]} def retriever(state: MessagesState): query = state["messages"][-1].content doc = _retriever.similarity_search(query, k=1)[0] content = doc.page_content if "Final answer :" in content: answer = content.split("Final answer :")[-1].strip() else: answer = content.strip() return {"messages": [AIMessage(content=answer)]} graph = StateGraph(MessagesState) graph.add_node("retriever", retriever) graph.set_entry_point("retriever") graph.set_finish_point("retriever") return graph.compile()