|
import streamlit as st
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from transformers import BertTokenizer, BertModel
|
|
import requests
|
|
from bs4 import BeautifulSoup
|
|
import pandas as pd
|
|
|
|
|
|
class HeadlineClassifier(torch.nn.Module):
|
|
def __init__(self, num_aspect_classes, num_polarity_classes):
|
|
super(HeadlineClassifier, self).__init__()
|
|
self.bert = BertModel.from_pretrained("sagorsarker/bangla-bert-base", return_dict=False)
|
|
self.drop = torch.nn.Dropout(0.5)
|
|
self.aspect_out = torch.nn.Linear(self.bert.config.hidden_size, num_aspect_classes)
|
|
self.polarity_out = torch.nn.Linear(self.bert.config.hidden_size, num_polarity_classes)
|
|
|
|
def forward(self, input_ids, attention_mask):
|
|
_, pooled_output = self.bert(input_ids=input_ids, attention_mask=attention_mask, return_dict=False)
|
|
output = self.drop(pooled_output)
|
|
aspect_output = self.aspect_out(output)
|
|
polarity_output = self.polarity_out(output)
|
|
return aspect_output, polarity_output
|
|
|
|
|
|
tokenizer = BertTokenizer.from_pretrained("sagorsarker/bangla-bert-base")
|
|
model = HeadlineClassifier(num_aspect_classes=4, num_polarity_classes=3)
|
|
model.load_state_dict(torch.load('best_model_state1.bin', map_location=torch.device('cpu')))
|
|
model.eval()
|
|
|
|
|
|
aspect_class_names = ["others", "politics", "religion", "sports"]
|
|
polarity_class_names = ["negative", "neutral", "positive"]
|
|
|
|
|
|
def predict_text(text):
|
|
encoded = tokenizer.encode_plus(
|
|
text,
|
|
max_length=40,
|
|
add_special_tokens=True,
|
|
return_token_type_ids=False,
|
|
pad_to_max_length=True,
|
|
return_attention_mask=True,
|
|
return_tensors='pt'
|
|
)
|
|
input_ids = encoded['input_ids']
|
|
attention_mask = encoded['attention_mask']
|
|
|
|
with torch.no_grad():
|
|
aspect_output, polarity_output = model(input_ids, attention_mask)
|
|
aspect_prediction = torch.argmax(aspect_output, dim=1).item()
|
|
polarity_prediction = torch.argmax(polarity_output, dim=1).item()
|
|
|
|
return aspect_class_names[aspect_prediction], polarity_class_names[polarity_prediction]
|
|
|
|
|
|
def scrape_headlines(url):
|
|
response = requests.get(url)
|
|
soup = BeautifulSoup(response.content, "html.parser")
|
|
|
|
|
|
headlines = [h.get_text(strip=True) for h in soup.find_all("a", class_=["title-link", "stretched-link", "Title"])[:50]]
|
|
return headlines
|
|
|
|
|
|
st.title("Bangla Headline Aspect and Polarity Predictor")
|
|
|
|
|
|
option = st.radio("Choose Analysis Type:", ("Particular", "Overall"))
|
|
|
|
if option == "Particular":
|
|
|
|
text_input = st.text_area("Enter your Bangla text:")
|
|
if st.button("Predict"):
|
|
if text_input.strip():
|
|
aspect, polarity = predict_text(text_input)
|
|
st.write("### Original Text:")
|
|
st.write(f"{text_input}")
|
|
st.write(f"**Predicted Aspect Class:** {aspect}")
|
|
st.write(f"**Predicted Polarity Class:** {polarity}")
|
|
else:
|
|
st.warning("Please enter some text to predict.")
|
|
|
|
elif option == "Overall":
|
|
|
|
url_input = st.text_input("Enter the URL:")
|
|
if st.button("Analyze Headlines"):
|
|
if url_input.strip():
|
|
headlines = scrape_headlines(url_input)
|
|
if not headlines:
|
|
st.warning("No headlines found. Please check the URL or structure of the site.")
|
|
else:
|
|
|
|
aspect_counts = {cls: 0 for cls in aspect_class_names}
|
|
polarity_counts = {cls: 0 for cls in polarity_class_names}
|
|
|
|
|
|
for headline in headlines:
|
|
aspect, polarity = predict_text(headline)
|
|
aspect_counts[aspect] += 1
|
|
polarity_counts[polarity] += 1
|
|
|
|
|
|
st.write("### Aspect Class Counts")
|
|
for cls in aspect_class_names:
|
|
st.write(f"{cls}: {aspect_counts[cls]}")
|
|
|
|
st.write("### Polarity Class Counts")
|
|
for cls in polarity_class_names:
|
|
st.write(f"{cls}: {polarity_counts[cls]}")
|
|
|
|
|
|
st.write("### Aspect Distribution")
|
|
st.bar_chart(pd.DataFrame(list(aspect_counts.items()), columns=['Aspect', 'Count']).set_index('Aspect'))
|
|
|
|
st.write("### Polarity Distribution")
|
|
st.bar_chart(pd.DataFrame(list(polarity_counts.items()), columns=['Polarity', 'Count']).set_index('Polarity'))
|
|
else:
|
|
st.warning("Please enter a valid URL.")
|
|
|