Spaces:
Sleeping
Sleeping
File size: 22,707 Bytes
5ac1897 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import copy
import os
import numpy as np
import torch
from typing import Any, Dict, List, Union
from yacs.config import CfgNode
import braceexpand
import cv2
from ipdb import set_trace
from .dataset import Dataset
from .utils import get_example, expand_to_aspect_ratio
def expand(s):
return os.path.expanduser(os.path.expandvars(s))
def expand_urls(urls: Union[str, List[str]]):
if isinstance(urls, str):
urls = [urls]
urls = [u for url in urls for u in braceexpand.braceexpand(expand(url))]
return urls
AIC_TRAIN_CORRUPT_KEYS = {
'0a047f0124ae48f8eee15a9506ce1449ee1ba669',
'1a703aa174450c02fbc9cfbf578a5435ef403689',
'0394e6dc4df78042929b891dbc24f0fd7ffb6b6d',
'5c032b9626e410441544c7669123ecc4ae077058',
'ca018a7b4c5f53494006ebeeff9b4c0917a55f07',
'4a77adb695bef75a5d34c04d589baf646fe2ba35',
'a0689017b1065c664daef4ae2d14ea03d543217e',
'39596a45cbd21bed4a5f9c2342505532f8ec5cbb',
'3d33283b40610d87db660b62982f797d50a7366b',
}
CORRUPT_KEYS = {
*{f'aic-train/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
*{f'aic-train-vitpose/{k}' for k in AIC_TRAIN_CORRUPT_KEYS},
}
body_permutation = [0, 1, 5, 6, 7, 2, 3, 4, 8, 12, 13, 14, 9, 10, 11, 16, 15, 18, 17, 22, 23, 24, 19, 20, 21]
extra_permutation = [5, 4, 3, 2, 1, 0, 11, 10, 9, 8, 7, 6, 12, 13, 14, 15, 16, 17, 18]
FLIP_KEYPOINT_PERMUTATION = body_permutation + [25 + i for i in extra_permutation]
DEFAULT_MEAN = 255. * np.array([0.485, 0.456, 0.406])
DEFAULT_STD = 255. * np.array([0.229, 0.224, 0.225])
DEFAULT_IMG_SIZE = 256
class ImageDataset(Dataset):
def __init__(self,
cfg: CfgNode,
dataset_file: str,
img_dir: str,
train: bool = True,
prune: Dict[str, Any] = {},
**kwargs):
"""
Dataset class used for loading images and corresponding annotations.
Args:
cfg (CfgNode): Model config file.
dataset_file (str): Path to npz file containing dataset info.
img_dir (str): Path to image folder.
train (bool): Whether it is for training or not (enables data augmentation).
"""
super(ImageDataset, self).__init__()
self.train = train
self.cfg = cfg
self.img_size = cfg['IMAGE_SIZE']
self.mean = 255. * np.array(self.cfg['IMAGE_MEAN'])
self.std = 255. * np.array(self.cfg['IMAGE_STD'])
self.img_dir = img_dir
self.data = np.load(dataset_file, allow_pickle=True)
self.imgname = self.data['imgname']
self.personid = np.zeros(len(self.imgname), dtype=np.int32)
self.extra_info = self.data.get('extra_info', [{} for _ in range(len(self.imgname))])
self.flip_keypoint_permutation = copy.copy(FLIP_KEYPOINT_PERMUTATION)
num_pose = 3 * 24
# Bounding boxes are assumed to be in the center and scale format
self.center = self.data['center']
self.scale = self.data['scale'].reshape(len(self.center), -1) / 200.0
if self.scale.shape[1] == 1:
self.scale = np.tile(self.scale, (1, 2))
assert self.scale.shape == (len(self.center), 2)
# Get gt SMPLX parameters, if available
try:
self.body_pose = self.data['body_pose'].astype(np.float32)
self.has_body_pose = self.data['has_body_pose'].astype(np.float32)
except KeyError:
self.body_pose = np.zeros((len(self.imgname), num_pose), dtype=np.float32)
self.has_body_pose = np.zeros(len(self.imgname), dtype=np.float32)
try:
self.betas = self.data['betas'].astype(np.float32)
self.has_betas = self.data['has_betas'].astype(np.float32)
except KeyError:
self.betas = np.zeros((len(self.imgname), 10), dtype=np.float32)
self.has_betas = np.zeros(len(self.imgname), dtype=np.float32)
# try:
# self.trans = self.data['trans'].astype(np.float32)
# except KeyError:
# self.trans = np.zeros((len(self.imgname), 3), dtype=np.float32)
# Try to get 2d keypoints, if available
try:
body_keypoints_2d = self.data['body_keypoints_2d']
except KeyError:
body_keypoints_2d = np.zeros((len(self.center), 25, 3))
# Try to get extra 2d keypoints, if available
try:
extra_keypoints_2d = self.data['extra_keypoints_2d']
except KeyError:
extra_keypoints_2d = np.zeros((len(self.center), 19, 3))
self.keypoints_2d = np.concatenate((body_keypoints_2d, extra_keypoints_2d), axis=1).astype(np.float32)
# Try to get 3d keypoints, if available
try:
body_keypoints_3d = self.data['body_keypoints_3d'].astype(np.float32)
except KeyError:
body_keypoints_3d = np.zeros((len(self.center), 25, 4), dtype=np.float32)
# Try to get extra 3d keypoints, if available
try:
extra_keypoints_3d = self.data['extra_keypoints_3d'].astype(np.float32)
except KeyError:
extra_keypoints_3d = np.zeros((len(self.center), 19, 4), dtype=np.float32)
body_keypoints_3d[:, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], -1] = 0
self.keypoints_3d = np.concatenate((body_keypoints_3d, extra_keypoints_3d), axis=1).astype(np.float32)
def __len__(self) -> int:
return len(self.scale)
def __getitem__(self, idx: int) -> Dict:
"""
Returns an example from the dataset.
"""
try:
image_file_rel = self.imgname[idx].decode('utf-8')
except AttributeError:
image_file_rel = self.imgname[idx]
image_file = os.path.join(self.img_dir, image_file_rel)
keypoints_2d = self.keypoints_2d[idx].copy()
keypoints_3d = self.keypoints_3d[idx].copy()
center = self.center[idx].copy()
center_x = center[0]
center_y = center[1]
scale = self.scale[idx]
BBOX_SHAPE = self.cfg['BBOX_SHAPE']
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
bbox_expand_factor = bbox_size / ((scale*200).max())
body_pose = self.body_pose[idx].copy().astype(np.float32)
betas = self.betas[idx].copy().astype(np.float32)
# trans = self.trans[idx].copy().astype(np.float32)
has_body_pose = self.has_body_pose[idx].copy()
has_betas = self.has_betas[idx].copy()
smpl_params = {'global_orient': body_pose[:3],
'body_pose': body_pose[3:],
'betas': betas,
# 'trans': trans,
}
has_smpl_params = {'global_orient': has_body_pose,
'body_pose': has_body_pose,
'betas': has_betas
}
smpl_params_is_axis_angle = {'global_orient': True,
'body_pose': True,
'betas': False
}
augm_config = self.cfg['augm']
# Crop image and (possibly) perform data augmentation
img_patch, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size, augm_record = get_example(image_file,
center_x, center_y,
bbox_size, bbox_size,
keypoints_2d, keypoints_3d,
smpl_params, has_smpl_params,
self.flip_keypoint_permutation,
self.img_size, self.img_size,
self.mean, self.std, self.train, augm_config)
item = {}
# These are the keypoints in the original image coordinates (before cropping)
orig_keypoints_2d = self.keypoints_2d[idx].copy()
item['img_patch'] = img_patch
item['keypoints_2d'] = keypoints_2d.astype(np.float32)
item['keypoints_3d'] = keypoints_3d.astype(np.float32)
item['orig_keypoints_2d'] = orig_keypoints_2d
item['box_center'] = self.center[idx].copy()
item['box_size'] = bbox_size
item['bbox_expand_factor'] = bbox_expand_factor
item['img_size'] = 1.0 * img_size[::-1].copy()
item['smpl_params'] = smpl_params
item['has_smpl_params'] = has_smpl_params
item['smpl_params_is_axis_angle'] = smpl_params_is_axis_angle
item['imgname'] = image_file
item['imgname_rel'] = image_file_rel
item['personid'] = int(self.personid[idx])
item['extra_info'] = copy.deepcopy(self.extra_info[idx])
item['idx'] = idx
item['_scale'] = scale
item['augm_record'] = augm_record # Augmentation record for recovery in self-improvement process.
return item
@staticmethod
def load_tars_as_webdataset(cfg: CfgNode, urls: Union[str, List[str]], train: bool,
resampled=False,
epoch_size=None,
cache_dir=None,
**kwargs) -> Dataset:
"""
Loads the dataset from a webdataset tar file.
"""
from .smplh_prob_filter import poses_check_probable, load_amass_hist_smooth
IMG_SIZE = cfg['IMAGE_SIZE']
BBOX_SHAPE = cfg['BBOX_SHAPE']
MEAN = 255. * np.array(cfg['IMAGE_MEAN'])
STD = 255. * np.array(cfg['IMAGE_STD'])
def split_data(source):
for item in source:
datas = item['data.pyd']
for pid, data in enumerate(datas):
data['pid'] = pid
data['orig_has_body_pose'] = data['orig_pve_max'] < 0.1
data['orig_has_betas'] = data['orig_pve_max'] < 0.1
if 'flip_pve_mean' in data:
data['flip_has_body_pose'] = data['flip_pve_mean'] < 0.05 # TODO: fix this problems
data['flip_has_betas'] = data['flip_has_body_pose']
else:
data['flip_has_body_pose'] = data['flip_pve_max'] < 0.65
data['flip_has_betas'] = data['flip_has_body_pose']
# data['body_pose'] = data['orig_poses']
# data['betas'] = data['orig_betas']
if 'detection.npz' in item:
det_idx = data['extra_info']['detection_npz_idx']
mask = item['detection.npz']['masks'][det_idx]
else:
mask = np.ones_like(item['jpg'][:,:,0], dtype=bool)
yield {
'__key__': item['__key__'],
'jpg': item['jpg'],
'data.pyd': data,
'mask': mask,
}
def suppress_bad_kps(item, thresh=0.0):
if thresh > 0:
kp2d = item['data.pyd']['keypoints_2d']
kp2d_conf = np.where(kp2d[:, 2] < thresh, 0.0, kp2d[:, 2])
item['data.pyd']['keypoints_2d'] = np.concatenate([kp2d[:,:2], kp2d_conf[:,None]], axis=1)
return item
def filter_numkp(item, numkp=4, thresh=0.0):
kp_conf = item['data.pyd']['keypoints_2d'][:, 2]
return (kp_conf > thresh).sum() > numkp
def filter_reproj_error(item, thresh=10**4.5):
losses = item['data.pyd'].get('extra_info', {}).get('fitting_loss', np.array({})).item()
reproj_loss = losses.get('reprojection_loss', None)
return reproj_loss is None or reproj_loss < thresh
def filter_bbox_size(item, thresh=1):
bbox_size_min = item['data.pyd']['scale'].min().item() * 200.
return bbox_size_min > thresh
def filter_no_poses(item):
return (item['data.pyd']['has_body_pose'] > 0)
def supress_bad_betas(item, thresh=3):
for side in ['orig', 'flip']:
has_betas = item['data.pyd'][f'{side}_has_betas']
if thresh > 0 and has_betas:
betas_abs = np.abs(item['data.pyd'][f'{side}_betas'])
if (betas_abs > thresh).any():
item['data.pyd'][f'{side}_has_betas'] = False
return item
amass_poses_hist100_smooth = load_amass_hist_smooth()
def supress_bad_poses(item):
for side in ['orig', 'flip']:
has_body_pose = item['data.pyd'][f'{side}_has_body_pose']
if has_body_pose:
body_pose = item['data.pyd'][f'{side}_body_pose']
pose_is_probable = poses_check_probable(torch.from_numpy(body_pose)[None, 3:], amass_poses_hist100_smooth).item()
if not pose_is_probable:
item['data.pyd'][f'{side}_has_body_pose'] = False
return item
def poses_betas_simultaneous(item):
# We either have both body_pose and betas, or neither
for side in ['orig', 'flip']:
has_betas = item['data.pyd'][f'{side}_has_betas']
has_body_pose = item['data.pyd'][f'{side}_has_body_pose']
item['data.pyd'][f'{side}_has_betas'] = item['data.pyd'][f'{side}_has_body_pose'] = np.array(float((has_body_pose>0) and (has_betas>0)))
return item
def set_betas_for_reg(item):
for side in ['orig', 'flip']:
# Always have betas set to true
has_betas = item['data.pyd'][f'{side}_has_betas']
betas = item['data.pyd'][f'{side}_betas']
if not (has_betas>0):
item['data.pyd'][f'{side}_has_betas'] = np.array(float((True)))
item['data.pyd'][f'{side}_betas'] = betas * 0
return item
# Load the dataset
if epoch_size is not None:
resampled = True
corrupt_filter = lambda sample: (sample['__key__'] not in CORRUPT_KEYS)
import webdataset as wds
dataset = wds.WebDataset(expand_urls(urls),
nodesplitter=wds.split_by_node,
shardshuffle=True,
resampled=resampled,
cache_dir=cache_dir,
).select(corrupt_filter)
if train:
dataset = dataset.shuffle(100)
dataset = dataset.decode('rgb8').rename(jpg='jpg;jpeg;png')
# Process the dataset
dataset = dataset.compose(split_data)
# Filter/clean the dataset
SUPPRESS_KP_CONF_THRESH = cfg.get('SUPPRESS_KP_CONF_THRESH', 0.0)
SUPPRESS_BETAS_THRESH = cfg.get('SUPPRESS_BETAS_THRESH', 0.0)
SUPPRESS_BAD_POSES = cfg.get('SUPPRESS_BAD_POSES', False)
POSES_BETAS_SIMULTANEOUS = cfg.get('POSES_BETAS_SIMULTANEOUS', False)
BETAS_REG = cfg.get('BETAS_REG', False)
FILTER_NO_POSES = cfg.get('FILTER_NO_POSES', False)
FILTER_NUM_KP = cfg.get('FILTER_NUM_KP', 4)
FILTER_NUM_KP_THRESH = cfg.get('FILTER_NUM_KP_THRESH', 0.0)
FILTER_REPROJ_THRESH = cfg.get('FILTER_REPROJ_THRESH', 0.0)
FILTER_MIN_BBOX_SIZE = cfg.get('FILTER_MIN_BBOX_SIZE', 0.0)
if SUPPRESS_KP_CONF_THRESH > 0:
dataset = dataset.map(lambda x: suppress_bad_kps(x, thresh=SUPPRESS_KP_CONF_THRESH))
if SUPPRESS_BETAS_THRESH > 0:
dataset = dataset.map(lambda x: supress_bad_betas(x, thresh=SUPPRESS_BETAS_THRESH))
if SUPPRESS_BAD_POSES:
dataset = dataset.map(lambda x: supress_bad_poses(x))
if POSES_BETAS_SIMULTANEOUS:
dataset = dataset.map(lambda x: poses_betas_simultaneous(x))
if FILTER_NO_POSES:
dataset = dataset.select(lambda x: filter_no_poses(x))
if FILTER_NUM_KP > 0:
dataset = dataset.select(lambda x: filter_numkp(x, numkp=FILTER_NUM_KP, thresh=FILTER_NUM_KP_THRESH))
if FILTER_REPROJ_THRESH > 0:
dataset = dataset.select(lambda x: filter_reproj_error(x, thresh=FILTER_REPROJ_THRESH))
if FILTER_MIN_BBOX_SIZE > 0:
dataset = dataset.select(lambda x: filter_bbox_size(x, thresh=FILTER_MIN_BBOX_SIZE))
if BETAS_REG:
dataset = dataset.map(lambda x: set_betas_for_reg(x)) # NOTE: Must be at the end
use_skimage_antialias = cfg.get('USE_SKIMAGE_ANTIALIAS', False)
border_mode = {
'constant': cv2.BORDER_CONSTANT,
'replicate': cv2.BORDER_REPLICATE,
}[cfg.get('BORDER_MODE', 'constant')]
# Process the dataset further
dataset = dataset.map(lambda x: ImageDataset.process_webdataset_tar_item(x, train,
augm_config=cfg['augm'],
MEAN=MEAN, STD=STD, IMG_SIZE=IMG_SIZE,
BBOX_SHAPE=BBOX_SHAPE,
use_skimage_antialias=use_skimage_antialias,
border_mode=border_mode,
))
if epoch_size is not None:
dataset = dataset.with_epoch(epoch_size)
return dataset
@staticmethod
def process_webdataset_tar_item(item, train,
augm_config=None,
MEAN=DEFAULT_MEAN,
STD=DEFAULT_STD,
IMG_SIZE=DEFAULT_IMG_SIZE,
BBOX_SHAPE=None,
use_skimage_antialias=False,
border_mode=cv2.BORDER_CONSTANT,
):
# Read data from item
key = item['__key__']
image = item['jpg']
data = item['data.pyd']
mask = item['mask']
pid = data['pid']
keypoints_2d = data['keypoints_2d']
keypoints_3d = data['keypoints_3d']
center = data['center']
scale = data['scale']
body_pose = (data['orig_poses'], data['flip_poses'])
betas = (data['orig_betas'], data['flip_betas'])
# trans = data['trans']
has_body_pose = (data['orig_has_body_pose'], data['flip_has_body_pose'])
has_betas = (data['orig_has_betas'], data['flip_has_betas'])
# image_file = data['image_file']
# Process data
orig_keypoints_2d = keypoints_2d.copy()
center_x = center[0]
center_y = center[1]
bbox_size = expand_to_aspect_ratio(scale*200, target_aspect_ratio=BBOX_SHAPE).max()
if bbox_size < 1:
breakpoint()
smpl_params = {'global_orient': (body_pose[0][:3], body_pose[1][:3]),
'body_pose': (body_pose[0][3:], body_pose[1][3:]),
'betas': betas,
# 'trans': trans,
}
has_smpl_params = {'global_orient': has_body_pose,
'body_pose': has_body_pose,
'betas': has_betas
}
smpl_params_is_axis_angle = {'global_orient': True,
'body_pose': True,
'betas': False
}
augm_config = copy.deepcopy(augm_config)
# Crop image and (possibly) perform data augmentation
img_rgba = np.concatenate([image, mask.astype(np.uint8)[:,:,None]*255], axis=2)
img_patch_rgba, keypoints_2d, keypoints_3d, smpl_params, has_smpl_params, img_size, trans, augm_record = get_example(img_rgba,
center_x, center_y,
bbox_size, bbox_size,
keypoints_2d, keypoints_3d,
smpl_params, has_smpl_params,
FLIP_KEYPOINT_PERMUTATION,
IMG_SIZE, IMG_SIZE,
MEAN, STD, train, augm_config,
is_bgr=False, return_trans=True,
use_skimage_antialias=use_skimage_antialias,
border_mode=border_mode,
)
img_patch = img_patch_rgba[:3,:,:]
mask_patch = (img_patch_rgba[3,:,:] / 255.0).clip(0,1)
if (mask_patch < 0.5).all():
mask_patch = np.ones_like(mask_patch)
item = {}
item['img'] = img_patch
item['mask'] = mask_patch
# item['img_og'] = image
# item['mask_og'] = mask
item['keypoints_2d'] = keypoints_2d.astype(np.float32)
item['keypoints_3d'] = keypoints_3d.astype(np.float32)
item['orig_keypoints_2d'] = orig_keypoints_2d
item['box_center'] = center.copy()
item['box_size'] = bbox_size
item['img_size'] = 1.0 * img_size[::-1].copy()
item['smpl_params'] = smpl_params
item['has_smpl_params'] = has_smpl_params
item['smpl_params_is_axis_angle'] = smpl_params_is_axis_angle
item['_scale'] = scale
item['_trans'] = trans
item['imgname'] = key
item['pid'] = pid
item['augm_record'] = augm_record # Augmentation record for recovery in self-improvement process.
return item
|