File size: 5,646 Bytes
5ac1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from lib.kits.basic import *

from lib.body_models.skel_utils.definition import JID2QIDS


def gmof(x, sigma=100):
    '''
    Geman-McClure error function, to be used as a robust loss function.
    '''
    x_squared = x ** 2
    sigma_squared = sigma ** 2
    return (sigma_squared * x_squared) / (sigma_squared + x_squared)


def compute_rel_change(prev_val: float, curr_val: float) -> float:
    '''
    Compute the relative change between two values.
    Copied from:
    https://github.com/vchoutas/smplify-x

    ### Args:
        - prev_val: float
        - curr_val: float

    ### Returns:
        - float
    '''
    return np.abs(prev_val - curr_val) / max([np.abs(prev_val), np.abs(curr_val), 1])


INVALID_JIDS = [37, 38]  # These joints are not reliable.

def get_kp_active_j_masks(parts:Union[str, List[str]], device='cuda'):
    # Generate the masks performed on the keypoints to mask the loss.
    act_jids = get_kp_active_jids(parts)
    masks = torch.zeros(44).to(device)
    masks[act_jids] = 1.0

    return masks


def get_kp_active_jids(parts:Union[str, List[str]]):
    if isinstance(parts, str):
        if parts == 'all':
            return get_kp_active_jids(['torso', 'limbs', 'head'])
        elif parts == 'hips':
            return [8, 9, 12, 27, 28, 39]
        elif parts == 'torso-lite':
            return [2, 5, 9, 12]
        elif parts == 'torso':
            return [1, 2, 5, 8, 9, 12, 27, 28, 33, 34, 37, 39, 40, 41]
        elif parts == 'limbs':
            return get_kp_active_jids(['limbs_proximal', 'limbs_distal'])
        elif parts == 'head':
            return [0, 15, 16, 17, 18, 38, 42, 43]
        elif parts == 'limbs_proximal':
            return [3, 6, 10, 13, 26, 29, 32, 35]
        elif parts == 'limbs_distal':
            return [4, 7, 11, 14, 19, 20, 21, 22, 23, 24, 25, 30, 31, 36]
        else:
            raise ValueError(f'Unsupported parts: {parts}')
    else:
        jids = []
        for part in parts:
            jids.extend(get_kp_active_jids(part))
        jids = set(jids) - set(INVALID_JIDS)
        return sorted(list(jids))


def get_params_active_j_masks(parts:Union[str, List[str]], device='cuda'):
    # Generate the masks performed on the keypoints to mask the loss.
    act_jids = get_params_active_jids(parts)
    masks = torch.zeros(24).to(device)
    masks[act_jids] = 1.0

    return masks


def get_params_active_jids(parts:Union[str, List[str]]):
    if isinstance(parts, str):
        if parts == 'all':
            return get_params_active_jids(['torso', 'limbs', 'head'])
        elif parts == 'torso-lite':
            return get_params_active_jids('torso')
        elif parts == 'hips':  # Enable `hips` if `poses_orient` is enabled.
            return [0]
        elif parts == 'torso':
            return [0, 11]
        elif parts == 'limbs':
            return get_params_active_jids(['limbs_proximal', 'limbs_distal'])
        elif parts == 'head':
            return [12, 13]
        elif parts == 'limbs_proximal':
            return [1, 6, 14, 15, 19, 20]
        elif parts == 'limbs_distal':
            return [2, 3, 4, 5, 7, 8, 9, 10, 16, 17, 18, 21, 22, 23]
        else:
            raise ValueError(f'Unsupported parts: {parts}')
    else:
        qids = []
        for part in parts:
            qids.extend(get_params_active_jids(part))
        return sorted(list(set(qids)))


def get_params_active_q_masks(parts:Union[str, List[str]], device='cuda'):
    # Generate the masks performed on the keypoints to mask the loss.
    act_qids = get_params_active_qids(parts)
    masks = torch.zeros(46).to(device)
    masks[act_qids] = 1.0

    return masks


def get_params_active_qids(parts:Union[str, List[str]]):
    act_jids = get_params_active_jids(parts)
    qids = []
    for act_jid in act_jids:
        qids.extend(JID2QIDS[act_jid])
    return sorted(list(set(qids)))


def estimate_kp2d_scale(
    kp2d      : torch.Tensor,
    edge_idxs : List[Tuple[int, int]] = [[5, 12], [2, 9]],  # shoulders to hips
):
    diff2d = []
    for edge in edge_idxs:
        diff2d.append(kp2d[:, edge[0]] - kp2d[:, edge[1]])  # list of (B, 2)
    scale2d = torch.stack(diff2d, dim=1).norm(dim=-1)  # (B, E)
    return scale2d.mean(dim=1)  # (B,)


@torch.no_grad()
def guess_cam_z(
    pd_kp3d      : torch.Tensor,
    gt_kp2d      : torch.Tensor,
    focal_length : float,
    edge_idxs    : List[Tuple[int, int]] = [[5, 12], [2, 9]],  # shoulders to hips
):
    '''
    Initializes the camera depth translation (i.e. z value) according to the ground truth 2D 
    keypoints and the predicted 3D keypoints.
    Modified from: https://github.com/vchoutas/smplify-x/blob/68f8536707f43f4736cdd75a19b18ede886a4d53/smplifyx/fitting.py#L36-L110

    ### Args
    - pd_kp3d: torch.Tensor, (B, J, 3)
    - gt_kp2d: torch.Tensor, (B, J, 2)
        - Without confidence.
    - focal_length: float
    - edge_idxs: List[Tuple[int, int]], default=[[5, 12], [2, 9]], i.e. shoulders to hips
        - Identify the edge to evaluate the scale of the entity.
    '''
    diff3d, diff2d = [], []
    for edge in edge_idxs:
        diff3d.append(pd_kp3d[:, edge[0]] - pd_kp3d[:, edge[1]])  # list of (B, 3)
        diff2d.append(gt_kp2d[:, edge[0]] - gt_kp2d[:, edge[1]])  # list of (B, 2)

    diff3d = torch.stack(diff3d, dim=1)  # (B, E, 3)
    diff2d = torch.stack(diff2d, dim=1)  # (B, E, 2)

    length3d = diff3d.norm(dim=-1)  # (B, E)
    length2d = diff2d.norm(dim=-1)  # (B, E)

    height3d = length3d.mean(dim=1)  # (B,)
    height2d = length2d.mean(dim=1)  # (B,)

    z_estim = focal_length * (height3d / height2d)  # (B,)
    return z_estim  # (B,)