HSMR / lib /utils /vis /wis3d.py
IsshikiHugh's picture
feat: CPU demo
5ac1897
raw
history blame
18.6 kB
import torch
import numpy as np
from typing import Union, List, overload
from wis3d import Wis3D
from lib.platform import PM
from lib.utils.geometry.rotation import axis_angle_to_matrix
class HWis3D(Wis3D):
''' Abstraction of Wis3D for human motion. '''
def __init__(
self,
out_path : str = PM.outputs / 'wis3d',
seq_name : str = 'debug',
xyz_pattern : tuple = ('x', 'y', 'z'),
):
seq_name = seq_name.replace('/', '-')
super().__init__(out_path, seq_name, xyz_pattern)
def add_text(self, text:str):
'''
Add an item of vertices whose name is used to put the text message. *Dirty use!*
### Args
- text: str
'''
fake_verts = np.array([[0, 0, 0]])
self.add_point_cloud(
vertices = fake_verts,
colors = None,
name = text,
)
def add_text_seq(self, texts:List[str], offset:int=0):
'''
Add an item of vertices whose name is used to put the text message. *Dirty use!*
### Args
- texts: List[str]
- The list of text messages.
- offset: int, default = 0
- The offset for the sequence index.
'''
fake_verts = np.array([[0, 0, 0]])
for i, text in enumerate(texts):
self.set_scene_id(i + offset)
self.add_point_cloud(
vertices = fake_verts,
colors = None,
name = text,
)
def add_image_seq(self, imgs:List[np.ndarray], name:str, offset:int=0):
'''
Add an item of vertices whose name is used to put the image. *Dirty use!*
### Args
- imgs: List[np.ndarray]
- The list of images.
- offset: int, default = 0
- The offset for the sequence index.
'''
for i, img in enumerate(imgs):
self.set_scene_id(i + offset)
self.add_image(
image = img,
name = name,
)
def add_motion_mesh(
self,
verts : Union[torch.Tensor, np.ndarray],
faces : Union[torch.Tensor, np.ndarray],
name : str,
offset: int = 0,
):
'''
Add sequence of vertices and face(s) to the wis3d viewer.
### Args
- verts: torch.Tensor or np.ndarray, (L, V, 3), L ~ sequence length, V ~ number of vertices
- faces: torch.Tensor or np.ndarray, (F, 3) or (L, F, 3), F ~ number of faces, L ~ sequence length
- name: str
- The name of the point cloud.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(verts.shape) == 3), 'The input `verts` should have 3 dimensions: (L, V, 3).'
assert (verts.shape[-1] == 3), 'The last dimension of `verts` should be 3.'
if isinstance(verts, np.ndarray):
verts = torch.from_numpy(verts)
if isinstance(faces, torch.Tensor):
faces = faces.detach().cpu().numpy()
if len(faces.shape) == 2:
faces = faces[None].repeat(verts.shape[0], 0)
assert (len(faces.shape) == 3), 'The input `faces` should have 2 or 3 dimensions: (F, 3) or (L, F, 3).'
assert (faces.shape[-1] == 3), 'The last dimension of `faces` should be 3.'
assert (verts.shape[0] == faces.shape[0]), 'The first dimension of `verts` and `faces` should be the same.'
L, _, _ = verts.shape
verts = verts.detach().cpu()
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
self.add_mesh(
vertices = verts[i],
faces = faces[i],
name = name,
) # type: ignore
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_motion_verts(
self,
verts : Union[torch.Tensor, np.ndarray],
name : str,
offset: int = 0,
):
'''
Add sequence of vertices to the wis3d viewer.
### Args
- verts: torch.Tensor or np.ndarray, (L, V, 3), L ~ sequence length, V ~ number of vertices
- name: str
- The name of the point cloud.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(verts.shape) == 3), 'The input `verts` should have 3 dimensions: (L, V, 3).'
assert (verts.shape[-1] == 3), 'The last dimension of `verts` should be 3.'
if isinstance(verts, np.ndarray):
verts = torch.from_numpy(verts)
L, _, _ = verts.shape
verts = verts.detach().cpu()
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
self.add_point_cloud(
vertices = verts[i],
colors = None,
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_motion_skel(
self,
joints : Union[torch.Tensor, np.ndarray],
bones : Union[list, torch.Tensor],
colors : Union[list, torch.Tensor],
name : str,
offset : int = 0,
threshold : float = 0.5,
):
'''
Add sequence of joints with specific skeleton to the wis3d viewer.
### Args
- joints: torch.Tensor or np.ndarray, shape = (L, J, 3) or (L, J, 4), L ~ sequence length, J ~ number of joints
- bones: list
- A list of bones of the skeleton, i.e. the edge in the kinematic trees.
- colors: list
- name: str
- The name of the point cloud.
- offset: int, default = 0
- The offset for the sequence index.
- threshold: float, default = 0.5
- Threshold to filter the confidence of the joints. It's useless when no confidence provided.
'''
assert (len(joints.shape) == 3), 'The input `joints` should have 3 dimensions: (L, J, 3).'
assert (joints.shape[-1] == 3 or joints.shape[-1] == 4), 'The last dimension of `joints` should be 3 or 4.'
if isinstance(joints, np.ndarray):
joints = torch.from_numpy(joints)
if isinstance(bones, List):
bones = torch.tensor(bones)
if isinstance(colors, List):
colors = torch.tensor(colors)
# Get the sequence length.
joints = joints.detach().cpu() # (L, J, 3) or (L, J, 4)
L, J, D = joints.shape
if D == 4:
conf = joints[:, :, 3]
joints = joints[:, :, :3]
else:
conf = None
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
bones_s = joints[i][bones[:, 0]]
bones_e = joints[i][bones[:, 1]]
if conf is not None:
mask = torch.logical_and(conf[i][bones[:, 0]] > threshold, conf[i][bones[:, 1]] > threshold)
bones_s, bones_e = bones_s[mask], bones_e[mask]
if len(bones_s) > 0:
self.add_lines(
start_points = bones_s,
end_points = bones_e,
colors = colors,
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_vec_seq(
self,
vecs : torch.Tensor,
name : str,
offset : int = 0,
seg_num : int = 16,
):
'''
Add directional line sequence to the wis3d viewer.
The line will be gradient colored, and the direction of the vector is visualized as from dark to light.
### Args
- vecs: torch.Tensor, (L, 2, 3) or (L, N, 2, 3), L ~ sequence length, N ~ vectors counts in one frame,
then give the start 3D point and end 3D point.
- name: str
- The name of the vector.
- offset: int, default = 0
- The offset for the sequence index.
- seg_num: int, default = 16
- The number of segments for gradient color, will just change the visualization effect.
'''
if len(vecs.shape) == 3:
vecs = vecs[:, None, :, :] # (L, 2, 3) -> (L, 1, 2, 3)
assert (len(vecs.shape) == 4), 'The input `vecs` should have 3 or 4 dimensions: (L, 2, 3) or (L, N, 2, 3).'
assert (vecs.shape[-2:] == (2, 3)), f'The last two dimension of `vecs` should be (2, 3), but got vecs.shape = {vecs.shape}.'
# Get the sequence length.
L, N, _, _ = vecs.shape
vecs = vecs.detach().cpu()
# Cut the line into segments.
steps_delta = (vecs[:, :, [1]] - vecs[:, :, [0]]) / (seg_num + 1) # (L, N, 1, 3)
steps_cnt = torch.arange(seg_num + 1).reshape((1, 1, seg_num + 1, 1)) # (1, 1, seg_num+1, 1)
segs = steps_delta * steps_cnt + vecs[:, :, [0]] # (L, N, seg_num+1, 3)
start_pts = segs[:, :, :-1] # (L, N, seg_num, 3)
end_pts = segs[:, :, 1:] # (L, N, seg_num, 3)
# Prepare the gradient colors.
grad_colors = torch.linspace(0, 255, seg_num).reshape((1, seg_num, 1)).repeat(N, 1, 3) # (N, seg_num, 3)
# Add vertices frame by frame.
for i in range(L):
self.set_scene_id(i + offset)
self.add_lines(
start_points = start_pts[i].reshape(-1, 3),
end_points = end_pts[i].reshape(-1, 3),
colors = grad_colors.reshape(-1, 3),
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_traj(
self,
positions : torch.Tensor,
name : str,
offset : int = 0,
):
'''
Visualize the the positions change across the time as trajectory. The newer position will be brighter.
### Args
- positions: torch.Tensor, (L, 3), L ~ sequence length
- name: str
- The name of the trajectory.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(positions.shape) == 2), 'The input `positions` should have 2 dimensions: (L, 3).'
assert (positions.shape[-1] == 3), 'The last dimension of `positions` should be 3.'
# Get the sequence length.
L, _ = positions.shape
positions = positions.detach().cpu()
traj = positions[[0]] # (1, 3)
# Prepare the gradient colors.
grad_colors = torch.linspace(208, 48, L).reshape((L, 1)).repeat(1, 3) # (L, 3)
for i in range(L):
traj = torch.cat((traj, positions[[i]]), dim=0) # (i+2, 3)
self.set_scene_id(i + offset)
self.add_lines(
start_points = traj[:-1],
end_points = traj[1:],
colors = grad_colors[-(i+1):],
name = name,
)
# Reset Wis3D scene id.
self.set_scene_id(0)
def add_sphere_sensors(
self,
positions : torch.Tensor,
radius : Union[torch.Tensor, float],
activities : torch.Tensor,
name : str,
):
'''
Draw the sphere sensors with different colors to represent the activities. The color is from white to red.
### Args
- positions: torch.Tensor, (N, 3), N ~ number of sensors
- radius: torch.Tensor or float, (N,), N ~ number of sensors
- activities: torch.Tensor, (N)
- The activities of the sensors, from 0 to 1.
- name: str
- The name of the spheres.
'''
assert (len(positions.shape) == 2), 'The input `positions` should have 2 dimensions: (N, 3).'
assert (positions.shape[-1] == 3), 'The last dimension of `positions` should be 3.'
N, _ = positions.shape
if isinstance(radius, float):
radius = torch.Tensor(radius).reshape(1).repeat(N) # (N)
elif len(radius.shape) == 0:
radius = radius.reshape(1).repeat(N)
colors = torch.ones(size=(N, 3)).float()
colors[:, 0] = 255
colors[:, 1] = (1 - activities) ** 2 * 255
colors[:, 2] = (1 - activities) ** 2 * 255
self.add_spheres(
centers = positions,
radius = radius,
colors = colors,
name = name,
)
def add_sphere_sensors_seq(
self,
positions : torch.Tensor,
radius : Union[torch.Tensor, float],
activities : torch.Tensor,
name : str,
offset : int = 0,
):
'''
Draw the sphere sensors with different colors to represent the activities. The color is from white to red.
### Args
- positions: torch.Tensor, (L, N, 3), N ~ number of sensors
- radius: torch.Tensor or float, (L, N,), N ~ number of sensors
- activities: torch.Tensor, (L, N)
- The activities of the sensors, from 0 to 1.
- name: str
- The name of the spheres.
- offset: int, default = 0
- The offset for the sequence index.
'''
assert (len(positions.shape) == 3), 'The input `positions` should have 3 dimensions: (L, N, 3).'
assert (positions.shape[-1] == 3), 'The last dimension of `positions` should be 3.'
L, N, _ = positions.shape
for i in range(L):
self.set_scene_id(i + offset)
self.add_sphere_sensors(
positions = positions[i],
radius = radius,
activities = activities[i],
name = name,
)
# ===== Overriding methods from original Wis3D. =====
def add_lines(
self,
start_points: torch.Tensor,
end_points : torch.Tensor,
colors : Union[list, torch.Tensor] = None,
name : str = None,
thickness : float = 0.01,
resolution : int = 4,
):
'''
Add lines by points. Overriding the original `add_lines` method to use mesh to provide browser from crash.
### Args
- start_points: torch.Tensor, (N, 3), N ~ number of lines
- end_points: torch.Tensor, (N, 3), N ~ number of lines
- colors: list or torch.Tensor, (N, 3)
- The color of the lines, from 0 to 255.
- name: str
- The name of the vector.
- thickness: float, default = 0.01
- The thickness of the lines.
- resolution: int, default = 3
- The 'line' was actually a poly-cylinder, and the resolution how it looks like a cylinder.
'''
if isinstance(colors, List):
colors = torch.tensor(colors)
assert (len(start_points.shape) == 2), 'The input `start_points` should have 2 dimensions: (N, 3).'
assert (len(end_points.shape) == 2), 'The input `end_points` should have 2 dimensions: (N, 3).'
assert (start_points.shape == end_points.shape), 'The input `start_points` and `end_points` should have the same shape.'
# ===== Prepare the data. =====
N, _ = start_points.shape
device = start_points.device
dir = end_points - start_points # (N, 3)
dis = torch.norm(dir, dim=-1, keepdim=True) # (N, 1)
dir = dir / dis # (N, 3)
K = resolution + 1 # the first & the last point share the position
# Find out directions that are negative to the y-axis.
vec_y = torch.Tensor([[0, 1, 0]]).float().to(device) # (1, 3)
neg_mask = (dir @ vec_y.transpose(-1, -2) < 0).squeeze() # (N,)
# ===== Get the ending surface vertices of the cylinder. =====
# 1. Get the surface vertices template in x-z plain.
radius = torch.linspace(0, 2*torch.pi, K) # (K,)
v_ending_temp = \
torch.stack(
[torch.cos(radius), torch.zeros_like(radius), torch.sin(radius)],
dim = -1
) # (K, 3)
v_ending_temp *= thickness # (K, 3)
v_ending_temp = v_ending_temp[None].repeat(N, 1, 1) # (N, K, 3)
# 2. Rotate the template plane to the direction of the line.
rot_axis = torch.linalg.cross(vec_y, dir) # (N, 3)
rot_axis[neg_mask] *= -1
rot_mat = axis_angle_to_matrix(rot_axis) # (N, 3, 3)
v_ending_temp = v_ending_temp @ rot_mat.transpose(-1, -2)
v_ending_temp = v_ending_temp.to(device)
# 3. Move the template plane to the start and end points and get the cylinder vertices.
v_cylinder_start = v_ending_temp + start_points[:, None] # (N, K, 3)
v_cylinder_end = v_ending_temp + end_points[:, None] # (N, K, 3)
# Swap the start and end points for the negative direction to adjust the normal direction.
v_cylinder_start[neg_mask], v_cylinder_end[neg_mask] = v_cylinder_end[neg_mask], v_cylinder_start[neg_mask]
v_cylinder = torch.cat([v_cylinder_start, v_cylinder_end], dim=1) # (N, 2*K, 3)
# ===== Calculate the face index. =====
idx = torch.arange(0, 2*K, device=device).to(device) # (2*K,)
idx_s, idx_e = idx[:K], idx[K:]
f_cylinder = torch.cat([
# Two ending surface.
torch.stack([idx_s[0].repeat(K-2), idx_s[1:-1], idx_s[2:]], dim=-1),
torch.stack([idx_e[0].repeat(K-2), idx_e[2:], idx_e[1:-1]], dim=-1),
# The side surface.
torch.stack([idx_e[:-1], idx_s[1:], idx_s[:-1]], dim=-1),
torch.stack([idx_e[:-1], idx_e[1:], idx_s[1:]], dim=-1),
], dim=0) # (4*K-4, 3)
f_cylinder = f_cylinder[None].repeat(N, 1, 1) # (N, 4*K-4, 3)
# ===== Calculate the face index. =====
if colors is not None:
c_cylinder = colors / 255.0 # (N, 3)
c_cylinder = c_cylinder[:, None].repeat(1, 2*K, 1) # (N, 2*K, 3)
else:
c_cylinder = None
N, V = v_cylinder.shape[:2]
v_cylinder = v_cylinder.reshape(-1, 3) # (N*(2*K), 3)
# ===== Manually match the points index before flatten. =====
f_cylinder = f_cylinder + torch.arange(0, N, device=device).unsqueeze(1).unsqueeze(1) * V
f_cylinder = f_cylinder.reshape(-1, 3) # (N*(4*K-4), 3)
if c_cylinder is not None:
c_cylinder = c_cylinder.reshape(-1, 3) # (N*(2*K), 3)
self.add_mesh(
vertices = v_cylinder,
vertex_colors = c_cylinder,
faces = f_cylinder,
name = name,
)