from lib.kits.basic import * class HSMRDiscriminator(nn.Module): def __init__(self): ''' Pose + Shape discriminator proposed in HMR ''' super(HSMRDiscriminator, self).__init__() self.n_poses = 23 # poses_alone self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1) nn.init.xavier_uniform_(self.D_conv1.weight) nn.init.zeros_(self.D_conv1.bias) self.relu = nn.ReLU(inplace=True) self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1) nn.init.xavier_uniform_(self.D_conv2.weight) nn.init.zeros_(self.D_conv2.bias) pose_out = [] for i in range(self.n_poses): pose_out_temp = nn.Linear(32, 1) nn.init.xavier_uniform_(pose_out_temp.weight) nn.init.zeros_(pose_out_temp.bias) pose_out.append(pose_out_temp) self.pose_out = nn.ModuleList(pose_out) # betas self.betas_fc1 = nn.Linear(10, 10) nn.init.xavier_uniform_(self.betas_fc1.weight) nn.init.zeros_(self.betas_fc1.bias) self.betas_fc2 = nn.Linear(10, 5) nn.init.xavier_uniform_(self.betas_fc2.weight) nn.init.zeros_(self.betas_fc2.bias) self.betas_out = nn.Linear(5, 1) nn.init.xavier_uniform_(self.betas_out.weight) nn.init.zeros_(self.betas_out.bias) # poses_joint self.D_alljoints_fc1 = nn.Linear(32*self.n_poses, 1024) nn.init.xavier_uniform_(self.D_alljoints_fc1.weight) nn.init.zeros_(self.D_alljoints_fc1.bias) self.D_alljoints_fc2 = nn.Linear(1024, 1024) nn.init.xavier_uniform_(self.D_alljoints_fc2.weight) nn.init.zeros_(self.D_alljoints_fc2.bias) self.D_alljoints_out = nn.Linear(1024, 1) nn.init.xavier_uniform_(self.D_alljoints_out.weight) nn.init.zeros_(self.D_alljoints_out.bias) def forward(self, poses_body: torch.Tensor, betas: torch.Tensor) -> torch.Tensor: ''' Forward pass of the discriminator. ### Args - poses: torch.Tensor, shape (B, 23, 9) - Matrix representation of the SKEL poses excluding the global orientation. - betas: torch.Tensor, shape (B, 10) ### Returns - torch.Tensor, shape (B, 25) ''' poses_body = poses_body.reshape(-1, self.n_poses, 1, 9) # (B, n_poses, 1, 9) B = poses_body.shape[0] poses_body = poses_body.permute(0, 3, 1, 2).contiguous() # (B, 9, n_poses, 1) # poses_alone poses_body = self.D_conv1(poses_body) poses_body = self.relu(poses_body) poses_body = self.D_conv2(poses_body) poses_body = self.relu(poses_body) poses_out = [] for i in range(self.n_poses): poses_out_i = self.pose_out[i](poses_body[:, :, i, 0]) poses_out.append(poses_out_i) poses_out = torch.cat(poses_out, dim=1) # betas betas = self.betas_fc1(betas) betas = self.relu(betas) betas = self.betas_fc2(betas) betas = self.relu(betas) betas_out = self.betas_out(betas) # poses_joint poses_body = poses_body.reshape(B, -1) poses_all = self.D_alljoints_fc1(poses_body) poses_all = self.relu(poses_all) poses_all = self.D_alljoints_fc2(poses_all) poses_all = self.relu(poses_all) poses_all_out = self.D_alljoints_out(poses_all) disc_out = torch.cat((poses_out, betas_out, poses_all_out), dim=1) return disc_out