Spaces:
Runtime error
Runtime error
Commit
Β·
3a1e48f
1
Parent(s):
758de8d
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
from insightface.app import FaceAnalysis
|
| 3 |
+
import torch
|
| 4 |
+
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from ip_adapter.ip_adapter_faceid import IPAdapterFaceID
|
| 7 |
+
|
| 8 |
+
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
|
| 9 |
+
app.prepare(ctx_id=0, det_size=(640, 640))
|
| 10 |
+
|
| 11 |
+
base_model_path = "SG161222/Realistic_Vision_V4.0_noVAE"
|
| 12 |
+
vae_model_path = "stabilityai/sd-vae-ft-mse"
|
| 13 |
+
ip_ckpt = hf_hub_download(repo_id='h94/IP-Adapter-FaceID', filename="ip-adapter-faceid_sd15.bin", repo_type="model")
|
| 14 |
+
|
| 15 |
+
device = "cuda"
|
| 16 |
+
|
| 17 |
+
noise_scheduler = DDIMScheduler(
|
| 18 |
+
num_train_timesteps=1000,
|
| 19 |
+
beta_start=0.00085,
|
| 20 |
+
beta_end=0.012,
|
| 21 |
+
beta_schedule="scaled_linear",
|
| 22 |
+
clip_sample=False,
|
| 23 |
+
set_alpha_to_one=False,
|
| 24 |
+
steps_offset=1,
|
| 25 |
+
)
|
| 26 |
+
vae = AutoencoderKL.from_pretrained(vae_model_path).to(dtype=torch.float16)
|
| 27 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
| 28 |
+
base_model_path,
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
+
scheduler=noise_scheduler,
|
| 31 |
+
vae=vae,
|
| 32 |
+
#feature_extractor=None,
|
| 33 |
+
#safety_checker=None
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
ip_model = IPAdapterFaceID(pipe, ip_ckpt, device)
|
| 37 |
+
|
| 38 |
+
def generate_faceid_embeddings(image):
|
| 39 |
+
#image = cv2.imread("person.jpg")
|
| 40 |
+
faces = app.get(image)
|
| 41 |
+
faceid_embeds = torch.from_numpy(faces[0].normed_embedding).unsqueeze(0)
|
| 42 |
+
return faceid_embeds
|
| 43 |
+
|
| 44 |
+
def generate_image(image, prompt, negative_prompt):
|
| 45 |
+
faceid_embeds = generate_faceid_embeddings(image)
|
| 46 |
+
images = ip_model.generate(
|
| 47 |
+
prompt=prompt, negative_prompt=negative_prompt, faceid_embeds=faceid_embeds, width=512, height=512, num_inference_steps=30
|
| 48 |
+
)
|
| 49 |
+
return images.image[0]
|
| 50 |
+
|
| 51 |
+
demo = gr.Interface(fn=generate_image, inputs=[gr.Image(label="Your face"), gr.Textbox(label="Prompt"), gr.Textbox(label="Negative Prompt")], outputs=[gr.Image(label="Generated Image")])
|
| 52 |
+
demo.launch()
|