Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,22 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from fastapi import FastAPI
|
|
|
|
| 2 |
from transformers import PreTrainedTokenizerFast
|
| 3 |
from tokenizers import ByteLevelBPETokenizer
|
| 4 |
from datasets import load_dataset
|
| 5 |
-
from contextlib import asynccontextmanager
|
| 6 |
|
| 7 |
app = FastAPI()
|
| 8 |
|
| 9 |
@asynccontextmanager
|
| 10 |
async def lifespan(app: FastAPI):
|
| 11 |
-
# Εκκίνηση διαδικασίας εκπαίδευσης tokenizer
|
| 12 |
await train_tokenizer()
|
| 13 |
-
yield #
|
| 14 |
-
# Οποιαδήποτε διαδικασία
|
| 15 |
|
| 16 |
app = FastAPI(lifespan=lifespan)
|
| 17 |
|
| 18 |
async def train_tokenizer():
|
| 19 |
-
#
|
| 20 |
vocab_size = 50000
|
| 21 |
min_frequency = 2
|
| 22 |
|
|
@@ -24,25 +28,22 @@ async def train_tokenizer():
|
|
| 24 |
dataset_greek = load_dataset("oscar", "unshuffled_deduplicated_el", split="train", streaming=True)
|
| 25 |
dataset_english = load_dataset("wikipedia", "20220301.en", split="train", streaming=True)
|
| 26 |
|
| 27 |
-
# Διαχείριση καθαρού κώδικα (
|
| 28 |
try:
|
| 29 |
dataset_code = load_dataset("bigcode/the-stack", split="train", streaming=True)
|
| 30 |
datasets_list = [dataset_greek, dataset_english, dataset_code]
|
| 31 |
except:
|
| 32 |
datasets_list = [dataset_greek, dataset_english]
|
| 33 |
|
| 34 |
-
# Ενοποίηση
|
| 35 |
def preprocess_data(dataset):
|
| 36 |
for item in dataset:
|
| 37 |
text = item["text"]
|
| 38 |
-
#
|
| 39 |
-
|
| 40 |
-
if text: # Εξασφαλίζουμε ότι δεν είναι άδειο το κείμενο
|
| 41 |
yield text
|
| 42 |
|
| 43 |
-
combined_data = (
|
| 44 |
-
preprocess_data(dataset) for dataset in datasets_list
|
| 45 |
-
)
|
| 46 |
|
| 47 |
# Δημιουργία του tokenizer
|
| 48 |
tokenizer = ByteLevelBPETokenizer()
|
|
@@ -60,4 +61,4 @@ async def train_tokenizer():
|
|
| 60 |
|
| 61 |
@app.get("/")
|
| 62 |
async def root():
|
| 63 |
-
return {"message": "Custom Tokenizer Training Completed and Saved"}
|
|
|
|
| 1 |
+
!pip install torch
|
| 2 |
+
!pip install tensorflow
|
| 3 |
+
|
| 4 |
+
|
| 5 |
from fastapi import FastAPI
|
| 6 |
+
from contextlib import asynccontextmanager
|
| 7 |
from transformers import PreTrainedTokenizerFast
|
| 8 |
from tokenizers import ByteLevelBPETokenizer
|
| 9 |
from datasets import load_dataset
|
|
|
|
| 10 |
|
| 11 |
app = FastAPI()
|
| 12 |
|
| 13 |
@asynccontextmanager
|
| 14 |
async def lifespan(app: FastAPI):
|
| 15 |
+
# Εκκίνηση της διαδικασίας εκπαίδευσης του tokenizer όταν η εφαρμογή ξεκινά
|
| 16 |
await train_tokenizer()
|
| 17 |
+
yield # Διαχείριση κατά τη διάρκεια της εφαρμογής
|
| 18 |
+
# Οποιαδήποτε διαδικασία που πρέπει να γίνει όταν η εφαρμογή σταματήσει
|
| 19 |
|
| 20 |
app = FastAPI(lifespan=lifespan)
|
| 21 |
|
| 22 |
async def train_tokenizer():
|
| 23 |
+
# Ρυθμίσεις tokenizer
|
| 24 |
vocab_size = 50000
|
| 25 |
min_frequency = 2
|
| 26 |
|
|
|
|
| 28 |
dataset_greek = load_dataset("oscar", "unshuffled_deduplicated_el", split="train", streaming=True)
|
| 29 |
dataset_english = load_dataset("wikipedia", "20220301.en", split="train", streaming=True)
|
| 30 |
|
| 31 |
+
# Διαχείριση καθαρού κώδικα (αν βρεθούν κατάλληλα δεδομένα)
|
| 32 |
try:
|
| 33 |
dataset_code = load_dataset("bigcode/the-stack", split="train", streaming=True)
|
| 34 |
datasets_list = [dataset_greek, dataset_english, dataset_code]
|
| 35 |
except:
|
| 36 |
datasets_list = [dataset_greek, dataset_english]
|
| 37 |
|
| 38 |
+
# Ενοποίηση δεδομένων και προεπεξεργασία
|
| 39 |
def preprocess_data(dataset):
|
| 40 |
for item in dataset:
|
| 41 |
text = item["text"]
|
| 42 |
+
text = text.strip().lower() # Μπορείς να το κάνεις lower αν το θέλεις
|
| 43 |
+
if text:
|
|
|
|
| 44 |
yield text
|
| 45 |
|
| 46 |
+
combined_data = (preprocess_data(dataset) for dataset in datasets_list)
|
|
|
|
|
|
|
| 47 |
|
| 48 |
# Δημιουργία του tokenizer
|
| 49 |
tokenizer = ByteLevelBPETokenizer()
|
|
|
|
| 61 |
|
| 62 |
@app.get("/")
|
| 63 |
async def root():
|
| 64 |
+
return {"message": "Custom Tokenizer Training Completed and Saved"}
|