Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,50 +3,44 @@ from transformers import PreTrainedTokenizerFast
|
|
3 |
from tokenizers import ByteLevelBPETokenizer
|
4 |
from datasets import load_dataset
|
5 |
from contextlib import asynccontextmanager
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
app = FastAPI()
|
10 |
|
11 |
@asynccontextmanager
|
12 |
async def lifespan(app: FastAPI):
|
13 |
-
|
14 |
await train_tokenizer()
|
15 |
-
yield
|
16 |
-
|
17 |
|
18 |
app = FastAPI(lifespan=lifespan)
|
19 |
|
20 |
async def train_tokenizer():
|
21 |
-
# Ρυθμίσεις tokenizer
|
22 |
vocab_size = 50000
|
23 |
min_frequency = 2
|
24 |
|
25 |
-
# Φόρτωση δεδομένων από Oscar και Wikipedia μέσω streaming
|
26 |
dataset_greek = load_dataset("oscar", "unshuffled_deduplicated_el", split="train", streaming=True)
|
27 |
dataset_english = load_dataset("wikipedia", "20220301.en", split="train", streaming=True)
|
28 |
|
29 |
-
# Διαχείριση καθαρού κώδικα (αν βρεθούν κατάλληλα δεδομένα)
|
30 |
try:
|
31 |
dataset_code = load_dataset("bigcode/the-stack", split="train", streaming=True)
|
32 |
datasets_list = [dataset_greek, dataset_english, dataset_code]
|
33 |
except:
|
34 |
datasets_list = [dataset_greek, dataset_english]
|
35 |
|
36 |
-
# Ενοποίηση δεδομένων και προεπεξεργασία
|
37 |
def preprocess_data(dataset):
|
38 |
for item in dataset:
|
39 |
text = item["text"]
|
40 |
-
text = text.strip().lower()
|
41 |
if text:
|
42 |
yield text
|
43 |
|
44 |
-
combined_data = (preprocess_data(dataset) for dataset in datasets_list)
|
45 |
|
46 |
-
# Δημιουργία του tokenizer
|
47 |
tokenizer = ByteLevelBPETokenizer()
|
48 |
|
49 |
-
# Εκπαίδευση του tokenizer
|
50 |
tokenizer.train_from_iterator(
|
51 |
combined_data,
|
52 |
vocab_size=vocab_size,
|
@@ -54,9 +48,9 @@ async def train_tokenizer():
|
|
54 |
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
55 |
)
|
56 |
|
57 |
-
# Αποθήκευση του tokenizer
|
58 |
tokenizer.save_model(".")
|
|
|
59 |
|
60 |
@app.get("/")
|
61 |
async def root():
|
62 |
-
return {"message": "Custom Tokenizer Training Completed and Saved"}
|
|
|
3 |
from tokenizers import ByteLevelBPETokenizer
|
4 |
from datasets import load_dataset
|
5 |
from contextlib import asynccontextmanager
|
6 |
+
import logging
|
7 |
|
8 |
+
logging.basicConfig(level=logging.INFO)
|
9 |
+
logger = logging.getLogger(__name__)
|
|
|
10 |
|
11 |
@asynccontextmanager
|
12 |
async def lifespan(app: FastAPI):
|
13 |
+
logger.info("Application starting...")
|
14 |
await train_tokenizer()
|
15 |
+
yield
|
16 |
+
logger.info("Application shutting down...")
|
17 |
|
18 |
app = FastAPI(lifespan=lifespan)
|
19 |
|
20 |
async def train_tokenizer():
|
|
|
21 |
vocab_size = 50000
|
22 |
min_frequency = 2
|
23 |
|
|
|
24 |
dataset_greek = load_dataset("oscar", "unshuffled_deduplicated_el", split="train", streaming=True)
|
25 |
dataset_english = load_dataset("wikipedia", "20220301.en", split="train", streaming=True)
|
26 |
|
|
|
27 |
try:
|
28 |
dataset_code = load_dataset("bigcode/the-stack", split="train", streaming=True)
|
29 |
datasets_list = [dataset_greek, dataset_english, dataset_code]
|
30 |
except:
|
31 |
datasets_list = [dataset_greek, dataset_english]
|
32 |
|
|
|
33 |
def preprocess_data(dataset):
|
34 |
for item in dataset:
|
35 |
text = item["text"]
|
36 |
+
text = text.strip().lower()
|
37 |
if text:
|
38 |
yield text
|
39 |
|
40 |
+
combined_data = (preprocess_data(dataset.take(1000)) for dataset in datasets_list)
|
41 |
|
|
|
42 |
tokenizer = ByteLevelBPETokenizer()
|
43 |
|
|
|
44 |
tokenizer.train_from_iterator(
|
45 |
combined_data,
|
46 |
vocab_size=vocab_size,
|
|
|
48 |
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>"]
|
49 |
)
|
50 |
|
|
|
51 |
tokenizer.save_model(".")
|
52 |
+
logger.info("Tokenizer training completed!")
|
53 |
|
54 |
@app.get("/")
|
55 |
async def root():
|
56 |
+
return {"message": "Custom Tokenizer Training Completed and Saved"}
|