Maslov-Artem
commited on
Commit
·
c747562
1
Parent(s):
cb2adb5
Streamlit adjustment
Browse files- pages/review_predictor.py +43 -23
- pages/text_generator.py +17 -6
pages/review_predictor.py
CHANGED
|
@@ -7,37 +7,58 @@ import torch
|
|
| 7 |
import torch.nn as nn
|
| 8 |
import transformers
|
| 9 |
|
| 10 |
-
from model.funcs import (create_model_and_tokenizer,
|
| 11 |
-
predict_sentiment)
|
| 12 |
from model.model import LSTMConcatAttentionEmbed
|
| 13 |
from preprocessing.preprocessing import data_preprocessing
|
| 14 |
from preprocessing.rnn_preprocessing import preprocess_single_string
|
| 15 |
|
| 16 |
-
# Load preprocessing steps
|
| 17 |
-
with open("vectorizer.pkl", "rb") as f:
|
| 18 |
-
logreg_vectorizer = pickle.load(f)
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
|
|
|
| 23 |
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
|
| 27 |
-
with open("model/vocab.json", "r") as f:
|
| 28 |
-
vocab_to_int = json.load(f)
|
| 29 |
|
| 30 |
-
|
| 31 |
-
int_to_vocab = json.load(f)
|
| 32 |
|
| 33 |
-
model_class = transformers.AutoModel
|
| 34 |
-
tokenizer_class = transformers.AutoTokenizer
|
| 35 |
-
pretrained_weights = "cointegrated/rubert-tiny2"
|
| 36 |
-
weights_path = "model/best_bert_weights.pth"
|
| 37 |
-
model = load_model(model_class, pretrained_weights, weights_path)
|
| 38 |
-
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def plot_and_predict(review: str, SEQ_LEN: int, model: nn.Module):
|
| 42 |
inp = preprocess_single_string(review, SEQ_LEN, vocab_to_int)
|
| 43 |
model.eval()
|
|
@@ -52,12 +73,12 @@ def preprocess_text_logreg(text):
|
|
| 52 |
clean_text = data_preprocessing(
|
| 53 |
text
|
| 54 |
) # Assuming data_preprocessing is your preprocessing function
|
| 55 |
-
print("Clean text ", clean_text)
|
| 56 |
vectorized_text = logreg_vectorizer.transform([" ".join(clean_text)])
|
| 57 |
return vectorized_text
|
| 58 |
|
| 59 |
|
| 60 |
# Define function for making predictions
|
|
|
|
| 61 |
def predict_sentiment_logreg(text):
|
| 62 |
# Preprocess input text
|
| 63 |
processed_text = preprocess_text_logreg(text)
|
|
@@ -68,7 +89,7 @@ def predict_sentiment_logreg(text):
|
|
| 68 |
|
| 69 |
metrics = {
|
| 70 |
"Models": ["Logistic Regression", "LSTM + attention", "ruBERTtiny2"],
|
| 71 |
-
"f1-macro score": [0.94376,
|
| 72 |
}
|
| 73 |
|
| 74 |
|
|
@@ -94,7 +115,6 @@ if st.button("Predict"):
|
|
| 94 |
)
|
| 95 |
elif model_type == "BERT":
|
| 96 |
prediction = predict_sentiment(text_input, model, tokenizer, "cpu")
|
| 97 |
-
st.write(prediction)
|
| 98 |
|
| 99 |
if prediction == 1:
|
| 100 |
st.write("prediction")
|
|
|
|
| 7 |
import torch.nn as nn
|
| 8 |
import transformers
|
| 9 |
|
| 10 |
+
from model.funcs import (create_model_and_tokenizer, execution_time,
|
| 11 |
+
load_model, predict_sentiment)
|
| 12 |
from model.model import LSTMConcatAttentionEmbed
|
| 13 |
from preprocessing.preprocessing import data_preprocessing
|
| 14 |
from preprocessing.rnn_preprocessing import preprocess_single_string
|
| 15 |
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
@st.cache_resource
|
| 18 |
+
def load_logreg():
|
| 19 |
+
with open("vectorizer.pkl", "rb") as f:
|
| 20 |
+
logreg_vectorizer = pickle.load(f)
|
| 21 |
|
| 22 |
+
with open("logreg_model.pkl", "rb") as f:
|
| 23 |
+
logreg_predictor = pickle.load(f)
|
| 24 |
+
return logreg_vectorizer, logreg_predictor
|
| 25 |
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
logreg_vectorizer, logreg_predictor = load_logreg()
|
|
|
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
@st.cache_resource
|
| 31 |
+
def load_lstm():
|
| 32 |
+
with open("model/vocab.json", "r") as f:
|
| 33 |
+
vocab_to_int = json.load(f)
|
| 34 |
|
| 35 |
+
with open("model/int_vocab.json", "r") as f:
|
| 36 |
+
int_to_vocab = json.load(f)
|
| 37 |
+
model_concat_embed = LSTMConcatAttentionEmbed()
|
| 38 |
+
model_concat_embed.load_state_dict(torch.load("model/model_weights.pt"))
|
| 39 |
+
|
| 40 |
+
return vocab_to_int, int_to_vocab, model_concat_embed
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
vocab_to_int, int_to_vocab, model_concat_embed = load_lstm()
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
@st.cache_resource
|
| 47 |
+
def load_bert():
|
| 48 |
+
model_class = transformers.AutoModel
|
| 49 |
+
tokenizer_class = transformers.AutoTokenizer
|
| 50 |
+
pretrained_weights = "cointegrated/rubert-tiny2"
|
| 51 |
+
weights_path = "model/best_bert_weights.pth"
|
| 52 |
+
model = load_model(model_class, pretrained_weights, weights_path)
|
| 53 |
+
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
|
| 54 |
+
|
| 55 |
+
return model, tokenizer
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
model, tokenizer = load_bert()
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@execution_time
|
| 62 |
def plot_and_predict(review: str, SEQ_LEN: int, model: nn.Module):
|
| 63 |
inp = preprocess_single_string(review, SEQ_LEN, vocab_to_int)
|
| 64 |
model.eval()
|
|
|
|
| 73 |
clean_text = data_preprocessing(
|
| 74 |
text
|
| 75 |
) # Assuming data_preprocessing is your preprocessing function
|
|
|
|
| 76 |
vectorized_text = logreg_vectorizer.transform([" ".join(clean_text)])
|
| 77 |
return vectorized_text
|
| 78 |
|
| 79 |
|
| 80 |
# Define function for making predictions
|
| 81 |
+
@execution_time
|
| 82 |
def predict_sentiment_logreg(text):
|
| 83 |
# Preprocess input text
|
| 84 |
processed_text = preprocess_text_logreg(text)
|
|
|
|
| 89 |
|
| 90 |
metrics = {
|
| 91 |
"Models": ["Logistic Regression", "LSTM + attention", "ruBERTtiny2"],
|
| 92 |
+
"f1-macro score": [0.94376, 0.93317, 0.94070],
|
| 93 |
}
|
| 94 |
|
| 95 |
|
|
|
|
| 115 |
)
|
| 116 |
elif model_type == "BERT":
|
| 117 |
prediction = predict_sentiment(text_input, model, tokenizer, "cpu")
|
|
|
|
| 118 |
|
| 119 |
if prediction == 1:
|
| 120 |
st.write("prediction")
|
pages/text_generator.py
CHANGED
|
@@ -2,6 +2,8 @@ import streamlit as st
|
|
| 2 |
import torch
|
| 3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 4 |
|
|
|
|
|
|
|
| 5 |
|
| 6 |
@st.cache_data
|
| 7 |
def load_model():
|
|
@@ -13,11 +15,10 @@ def load_model():
|
|
| 13 |
|
| 14 |
|
| 15 |
tokenizer, model = load_model()
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
st.write("42")
|
| 21 |
promt = tokenizer.encode(promt, return_tensors="pt")
|
| 22 |
model.eval()
|
| 23 |
with torch.no_grad():
|
|
@@ -27,6 +28,16 @@ if generate:
|
|
| 27 |
num_beams=2,
|
| 28 |
temperature=1.5,
|
| 29 |
top_p=0.9,
|
|
|
|
| 30 |
)
|
| 31 |
out = list(map(tokenizer.decode, out))[0]
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
| 4 |
|
| 5 |
+
from model.funcs import execution_time
|
| 6 |
+
|
| 7 |
|
| 8 |
@st.cache_data
|
| 9 |
def load_model():
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
tokenizer, model = load_model()
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
@execution_time
|
| 21 |
+
def generate_text(promt):
|
|
|
|
| 22 |
promt = tokenizer.encode(promt, return_tensors="pt")
|
| 23 |
model.eval()
|
| 24 |
with torch.no_grad():
|
|
|
|
| 28 |
num_beams=2,
|
| 29 |
temperature=1.5,
|
| 30 |
top_p=0.9,
|
| 31 |
+
max_length=150,
|
| 32 |
)
|
| 33 |
out = list(map(tokenizer.decode, out))[0]
|
| 34 |
+
return out
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
promt = st.text_input("Ask a question")
|
| 38 |
+
generate = st.button("Generate")
|
| 39 |
+
if generate:
|
| 40 |
+
if not promt:
|
| 41 |
+
st.write("42")
|
| 42 |
+
else:
|
| 43 |
+
st.write(generate_text(promt))
|