File size: 7,079 Bytes
3c22597
 
 
 
 
 
 
 
 
ca7808d
3c22597
 
 
a5cda12
 
3c22597
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7808d
3c22597
ca7808d
 
 
d3b8fe9
ca7808d
3c22597
d3b8fe9
 
 
 
 
3c22597
 
 
 
 
d3b8fe9
3c22597
 
ca7808d
 
 
 
 
 
 
3c22597
 
 
 
 
 
 
 
 
 
0c990cc
 
 
 
bd793a8
 
3c22597
 
 
0c990cc
bd793a8
0c990cc
 
bd793a8
3c22597
bd793a8
3c22597
 
 
 
 
 
 
 
 
 
 
ca7808d
3c22597
 
ca7808d
3c22597
 
 
 
 
 
ca7808d
 
 
 
3c22597
 
0c990cc
3c22597
0c990cc
3c22597
 
 
 
0c990cc
3c22597
 
 
0c990cc
 
 
 
 
 
a5cda12
3c22597
0c990cc
 
 
 
bd793a8
 
0c990cc
bd793a8
0c990cc
a5cda12
 
 
 
3c22597
a5cda12
 
 
 
 
 
 
 
 
9d7767b
a5cda12
0c990cc
 
3c22597
 
0c990cc
3c22597
a5cda12
3c22597
 
 
 
 
 
 
 
 
 
 
 
 
 
ca7808d
a5cda12
 
3c22597
 
a5cda12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# app.py
# =============
# This is a complete app.py file for an Arkanoid game that a neural network will play and learn using reinforcement learning.
# The game is built using pygame, and the neural network is trained using stable-baselines3. Gradio is used for the interface.

import os
import numpy as np
import pygame
import random
import gymnasium as gym
from stable_baselines3 import DQN
from stable_baselines3.common.evaluation import evaluate_policy
import gradio as gr
import cv2
import imageio

# Constants
SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
PADDLE_WIDTH = 100
PADDLE_HEIGHT = 10
BALL_RADIUS = 10
BRICK_WIDTH = 60
BRICK_HEIGHT = 20
BRICK_ROWS = 5
BRICK_COLS = 10
FPS = 60

# Colors
WHITE = (255, 255, 255)
BLACK = (0, 0, 0)
RED = (255, 0, 0)

# Initialize Pygame
pygame.init()
screen = pygame.display.set_mode((SCREEN_WIDTH, SCREEN_HEIGHT))
pygame.display.set_caption("Arkanoid")

# Game classes
class Paddle:
    def __init__(self):
        self.rect = pygame.Rect(SCREEN_WIDTH // 2 - PADDLE_WIDTH // 2, SCREEN_HEIGHT - PADDLE_HEIGHT - 10, PADDLE_WIDTH, PADDLE_HEIGHT)

    def move(self, direction):
        if direction == -1:
            self.rect.x -= 10
        elif direction == 1:
            self.rect.x += 10
        self.rect.clamp_ip(pygame.Rect(0, 0, SCREEN_WIDTH, SCREEN_HEIGHT))

class Ball:
    def __init__(self):
        self.rect = pygame.Rect(SCREEN_WIDTH // 2 - BALL_RADIUS, SCREEN_HEIGHT // 2 - BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
        self.velocity = [random.choice([-5, 5]), -5]

    def move(self):
        self.rect.x += self.velocity[0]
        self.rect.y += self.velocity[1]

        if self.rect.left <= 0 or self.rect.right >= SCREEN_WIDTH:
            self.velocity[0] = -self.velocity[0]
        if self.rect.top <= 0:
            self.velocity[1] = -self.velocity[1]

    def reset(self):
        self.rect = pygame.Rect(SCREEN_WIDTH // 2 - BALL_RADIUS, SCREEN_HEIGHT // 2 - BALL_RADIUS, BALL_RADIUS * 2, BALL_RADIUS * 2)
        self.velocity = [random.choice([-5, 5]), -5]

class Brick:
    def __init__(self, x, y):
        self.rect = pygame.Rect(x, y, BRICK_WIDTH, BRICK_HEIGHT)

class ArkanoidEnv(gym.Env):
    def __init__(self):
        super(ArkanoidEnv, self).__init__()
        self.action_space = gym.spaces.Discrete(3)  # 0: stay, 1: move left, 2: move right
        self.observation_space = gym.spaces.Box(low=0, high=SCREEN_WIDTH, shape=(5 + BRICK_ROWS * BRICK_COLS * 2,), dtype=np.float32)
        self.seed_value = None
        self.reset()

    def reset(self, seed=None, options=None):
        if seed is not None:
            random.seed(seed)
            np.random.seed(seed)
            self.seed_value = seed
        self.paddle = Paddle()
        self.ball = Ball()
        self.bricks = [Brick(x, y) for y in range(BRICK_HEIGHT, BRICK_HEIGHT * (BRICK_ROWS + 1), BRICK_HEIGHT) for x in range(BRICK_WIDTH, SCREEN_WIDTH - BRICK_WIDTH, BRICK_WIDTH)]
        self.done = False
        self.score = 0
        return self._get_state(), {}

    def step(self, action):
        if action == 0:
            self.paddle.move(0)
        elif action == 1:
            self.paddle.move(-1)
        elif action == 2:
            self.paddle.move(1)

        self.ball.move()

        if self.ball.rect.colliderect(self.paddle.rect):
            self.ball.velocity[1] = -self.ball.velocity[1]

        for brick in self.bricks[:]:
            if self.ball.rect.colliderect(brick.rect):
                self.bricks.remove(brick)
                self.ball.velocity[1] = -self.ball.velocity[1]
                self.score += 1
                reward = 1
                if not self.bricks:
                    reward += 10  # Bonus reward for breaking all bricks
                    self.done = True
                    truncated = False
                    return self._get_state(), reward, self.done, truncated, {}

        if self.ball.rect.bottom >= SCREEN_HEIGHT:
            self.done = True
            reward = -1
            truncated = False
        else:
            reward = 0
            truncated = False

        return self._get_state(), reward, self.done, truncated, {}

    def _get_state(self):
        state = [
            self.paddle.rect.x,
            self.ball.rect.x,
            self.ball.rect.y,
            self.ball.velocity[0],
            self.ball.velocity[1]
        ]
        for brick in self.bricks:
            state.extend([brick.rect.x, brick.rect.y])
        state.extend([0, 0] * (BRICK_ROWS * BRICK_COLS - len(self.bricks)))  # Padding for missing bricks
        return np.array(state, dtype=np.float32)

    def render(self, mode='human'):
        screen.fill(BLACK)
        pygame.draw.rect(screen, WHITE, self.paddle.rect)
        pygame.draw.ellipse(screen, WHITE, self.ball.rect)
        for brick in self.bricks:
            pygame.draw.rect(screen, RED, brick.rect)
        pygame.display.flip()
        pygame.time.Clock().tick(FPS)

    def close(self):
        pygame.quit()

# Training function
def train_model(env, total_timesteps=10000):
    model = DQN('MlpPolicy', env, verbose=1)
    model.learn(total_timesteps=total_timesteps)
    model.save("arkanoid_model")
    return model

# Evaluation function
def evaluate_model(model, env):
    mean_reward, _ = evaluate_policy(model, env, n_eval_episodes=10, render=False)
    return mean_reward

# Real-time training function
def train_and_play():
    env = ArkanoidEnv()
    model = DQN('MlpPolicy', env, verbose=1)
    total_timesteps = 10000
    timesteps_per_update = 1000
    video_frames = []

    for i in range(0, total_timesteps, timesteps_per_update):
        model.learn(total_timesteps=timesteps_per_update)
        obs = env.reset()[0]
        done = False
        truncated = False
        while not done and not truncated:
            action, _states = model.predict(obs, deterministic=True)
            obs, reward, done, truncated, info = env.step(action)
            env.render()
            # Capture the current frame
            frame = pygame.surfarray.array3d(pygame.display.get_surface())
            frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
            video_frames.append(frame)

    # Save the video
    video_path = "arkanoid_training.mp4"
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')
    video_writer = cv2.VideoWriter(video_path, fourcc, FPS, (SCREEN_WIDTH, SCREEN_HEIGHT))
    for frame in video_frames:
        video_writer.write(frame)
    video_writer.release()

    # Return the video path
    return video_path

# Main function
def main():
    # Gradio interface
    iface = gr.Interface(
        fn=train_and_play,
        inputs=None,
        outputs="video",
        live=True
    )
    iface.launch()

if __name__ == "__main__":
    main()

# Dependencies
# =============
# The following dependencies are required to run this app:
# - pygame
# - stable-baselines3
# - torch
# - gradio
# - gymnasium
# - opencv-python
# - imageio
#
# You can install these dependencies using pip:
# pip install pygame stable-baselines3 torch gradio gymnasium opencv-python imageio