Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,11 +1,11 @@
|
|
1 |
# app.py
|
2 |
# =============
|
3 |
-
# This is a complete app.py file for an automatic
|
4 |
# The app is built using Gradio and Hugging Face Transformers, and it runs on the CPU to avoid video memory usage.
|
5 |
|
6 |
import torch
|
7 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
-
import gradio as gr
|
9 |
|
10 |
# Set device to CPU
|
11 |
device = "cpu"
|
@@ -31,26 +31,37 @@ pipe = pipeline(
|
|
31 |
device=device,
|
32 |
)
|
33 |
|
34 |
-
|
|
|
35 |
"""
|
36 |
Transcribe the given audio file using the Whisper model.
|
37 |
|
38 |
Parameters:
|
39 |
audio_file (str): Path to the audio file.
|
|
|
40 |
|
41 |
Returns:
|
42 |
str: Transcribed text.
|
43 |
"""
|
44 |
-
|
|
|
45 |
return result["text"]
|
46 |
|
47 |
# Define the Gradio interface
|
48 |
iface = gr.Interface(
|
49 |
fn=transcribe_audio,
|
50 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
outputs=gr.Textbox(label="Transcription"),
|
52 |
title="Whisper ASR Demo",
|
53 |
-
description="Upload an audio file and get the transcribed text using the openai/whisper-large-v3-turbo model.",
|
54 |
)
|
55 |
|
56 |
# Launch the Gradio app
|
|
|
1 |
# app.py
|
2 |
# =============
|
3 |
+
# This is a complete app.py file for an automatic Speech Recognition (ASR) using the openai/whisper-large-v3-turbo model.
|
4 |
# The app is built using Gradio and Hugging Face Transformers, and it runs on the CPU to avoid video memory usage.
|
5 |
|
6 |
import torch
|
7 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
+
import gradio as gr
|
9 |
|
10 |
# Set device to CPU
|
11 |
device = "cpu"
|
|
|
31 |
device=device,
|
32 |
)
|
33 |
|
34 |
+
# Define the transcription function
|
35 |
+
def transcribe_audio(audio_file, language):
|
36 |
"""
|
37 |
Transcribe the given audio file using the Whisper model.
|
38 |
|
39 |
Parameters:
|
40 |
audio_file (str): Path to the audio file.
|
41 |
+
language (str): Language code for transcription.
|
42 |
|
43 |
Returns:
|
44 |
str: Transcribed text.
|
45 |
"""
|
46 |
+
generate_kwargs = {"language": language}
|
47 |
+
result = pipe(audio_file, generate_kwargs=generate_kwargs)
|
48 |
return result["text"]
|
49 |
|
50 |
# Define the Gradio interface
|
51 |
iface = gr.Interface(
|
52 |
fn=transcribe_audio,
|
53 |
+
inputs=[
|
54 |
+
gr.Audio(label="Upload Audio", type="filepath"),
|
55 |
+
gr.Dropdown(
|
56 |
+
label="Select Language",
|
57 |
+
choices=["en", "ru", "es", "fr", "de", "zh", "ja", "ko", "pt", "it"],
|
58 |
+
value="en",
|
59 |
+
description="Select the language for transcription."
|
60 |
+
)
|
61 |
+
],
|
62 |
outputs=gr.Textbox(label="Transcription"),
|
63 |
title="Whisper ASR Demo",
|
64 |
+
description="Upload an audio file and select the language to get the transcribed text using the openai/whisper-large-v3-turbo model.",
|
65 |
)
|
66 |
|
67 |
# Launch the Gradio app
|