Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
# =============
|
3 |
+
# This is a complete app.py file for an automatic speech recognition app using the openai/whisper-large-v3-turbo model.
|
4 |
+
# The app is built using Gradio and Hugging Face Transformers, and it runs on the CPU to avoid video memory usage.
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
# Set device to CPU
|
11 |
+
device = "cpu"
|
12 |
+
torch_dtype = torch.float32
|
13 |
+
|
14 |
+
# Load the model and processor
|
15 |
+
model_id = "openai/whisper-large-v3-turbo"
|
16 |
+
|
17 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
18 |
+
model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
19 |
+
)
|
20 |
+
model.to(device)
|
21 |
+
|
22 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
23 |
+
|
24 |
+
# Create the ASR pipeline
|
25 |
+
pipe = pipeline(
|
26 |
+
"automatic-speech-recognition",
|
27 |
+
model=model,
|
28 |
+
tokenizer=processor.tokenizer,
|
29 |
+
feature_extractor=processor.feature_extractor,
|
30 |
+
torch_dtype=torch_dtype,
|
31 |
+
device=device,
|
32 |
+
)
|
33 |
+
|
34 |
+
def transcribe_audio(audio_file):
|
35 |
+
"""
|
36 |
+
Transcribe the given audio file using the Whisper model.
|
37 |
+
|
38 |
+
Parameters:
|
39 |
+
audio_file (str): Path to the audio file.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
str: Transcribed text.
|
43 |
+
"""
|
44 |
+
result = pipe(audio_file)
|
45 |
+
return result["text"]
|
46 |
+
|
47 |
+
# Define the Gradio interface
|
48 |
+
iface = gr.Interface(
|
49 |
+
fn=transcribe_audio,
|
50 |
+
inputs=gr.inputs.Audio(source="upload", type="filepath"),
|
51 |
+
outputs="text",
|
52 |
+
title="Whisper ASR Demo",
|
53 |
+
description="Upload an audio file and get the transcribed text using the openai/whisper-large-v3-turbo model.",
|
54 |
+
)
|
55 |
+
|
56 |
+
# Launch the Gradio app
|
57 |
+
if __name__ == "__main__":
|
58 |
+
iface.launch()
|