IvanStudent's picture
Guardar mis cambios locales
0a8f03f
raw
history blame
3.72 kB
import pandas as pd
import matplotlib.pyplot as plt
import joblib
import gradio as gr
from dateutil.relativedelta import relativedelta
import calendar
import emoji # Importa la librería de emoji
def load_model():
try:
model = joblib.load('arima_sales_model.pkl')
return model, None
except Exception as e:
return None, emoji.emojize(f"Failed to load model :warning: {str(e)}")
def parse_date(date_str):
try:
date = pd.to_datetime(date_str, format="%B-%Y")
_, last_day = calendar.monthrange(date.year, date.month)
start_date = date.replace(day=1)
end_date = date.replace(day=last_day)
return start_date, end_date, None
except ValueError:
return None, None, emoji.emojize("Date format should be 'Month-Year', e.g., 'January-2024' :calendar:")
def forecast_sales(uploaded_file, start_date_str, end_date_str):
if uploaded_file is None:
return emoji.emojize("No file uploaded :file_folder:"), None, emoji.emojize("Please upload a file :upside_down_face:")
try:
df = pd.read_csv(uploaded_file)
if 'Date' not in df.columns or 'Sale' not in df.columns:
return None, emoji.emojize("The uploaded file must contain 'Date' and 'Sale' columns :x:"), "File does not have required columns."
except Exception as e:
return None, emoji.emojize(f"Failed to read the uploaded CSV file :disappointed: {str(e)}"), "Error reading file."
start_date, _, error = parse_date(start_date_str)
_, end_date, error_end = parse_date(end_date_str)
if error or error_end:
return None, error or error_end, "Invalid date format."
df['Date'] = pd.to_datetime(df['Date'])
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
df_filtered = df[(df['ds'] >= start_date) & (df['ds'] <= end_date)]
arima_model, error = load_model()
if arima_model is None:
return None, error, "Failed to load ARIMA model."
try:
forecast = arima_model.get_forecast(steps=60)
forecast_index = pd.date_range(start=end_date, periods=61, freq='D')[1:]
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(df_filtered['ds'], df_filtered['y'], label='Actual Sales', color='blue')
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='red', linestyle='--')
ax.set_xlabel('Date')
ax.set_ylabel('Sales')
ax.set_title('Sales Forecasting with ARIMA')
ax.legend()
return fig, emoji.emojize("File loaded and processed successfully :check_mark:")
except Exception as e:
return None, emoji.emojize(f"Failed to generate plot :cry: {str(e)}"), "Plotting failed."
def setup_interface():
with gr.Blocks() as demo:
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
with gr.Row():
file_input = gr.File(label=emoji.emojize("Upload your store data here :open_file_folder:"))
start_date_input = gr.Textbox(label="Start Date", placeholder="January-2024")
end_date_input = gr.Textbox(label="End Date", placeholder="December-2024")
forecast_button = gr.Button("Forecast Sales")
output_plot = gr.Plot()
output_message = gr.Textbox(label="Notifications", visible=True, lines=2)
forecast_button.click(
forecast_sales,
inputs=[file_input, start_date_input, end_date_input],
outputs=[output_plot, output_message]
)
return demo
if __name__ == "__main__":
interface = setup_interface()
interface.launch()