Commit
·
6458b87
1
Parent(s):
1217aab
Guardar mis cambios locales
Browse files
app.py
CHANGED
@@ -49,55 +49,3 @@ def main():
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
main()
|
52 |
-
=======
|
53 |
-
import streamlit as st
|
54 |
-
import pandas as pd
|
55 |
-
import matplotlib.pyplot as plt
|
56 |
-
from statsmodels.tsa.arima.model import ARIMA
|
57 |
-
import pickle
|
58 |
-
|
59 |
-
def main():
|
60 |
-
st.title("MLCast v1.1 - Intelligent Sales Forecasting System")
|
61 |
-
uploaded_file = st.file_uploader("Upload your store data here (must contain Date and Sales)", type="csv")
|
62 |
-
|
63 |
-
if uploaded_file is not None:
|
64 |
-
df = pd.read_csv(uploaded_file)
|
65 |
-
if 'Date' in df.columns and 'Sale' in df.columns:
|
66 |
-
st.success("File uploaded successfully!")
|
67 |
-
st.write(df.head())
|
68 |
-
df['Date'] = pd.to_datetime(df['Date'])
|
69 |
-
df_arima = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
70 |
-
|
71 |
-
with open('arima_sales_model.pkl', 'rb') as f:
|
72 |
-
arima_model = pickle.load(f)
|
73 |
-
|
74 |
-
forecast_period = 30
|
75 |
-
forecast = arima_model.get_forecast(steps=forecast_period)
|
76 |
-
forecast_index = pd.date_range(df['Date'].max(), periods=forecast_period + 1, freq='D')[1:]
|
77 |
-
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
78 |
-
|
79 |
-
fig, ax = plt.subplots(figsize=(10, 6))
|
80 |
-
ax.plot(df['Date'], df['Sale'], label='Historical Sales', color='blue')
|
81 |
-
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='red', linestyle='--')
|
82 |
-
ax.set_xlabel('Date')
|
83 |
-
ax.set_ylabel('Sales')
|
84 |
-
ax.set_title('Sales Forecasting with ARIMA')
|
85 |
-
ax.legend()
|
86 |
-
st.pyplot(fig)
|
87 |
-
|
88 |
-
st.sidebar.title("Adjust Forecast Range")
|
89 |
-
start_date = st.sidebar.date_input('Start Date', df['Date'].min())
|
90 |
-
end_date = st.sidebar.date_input('End Date', df['Date'].max())
|
91 |
-
filtered_df = df[(df['Date'] >= pd.to_datetime(start_date)) & (df['Date'] <= pd.to_datetime(end_date))]
|
92 |
-
fig_filtered, ax_filtered = plt.subplots(figsize=(10, 6))
|
93 |
-
ax_filtered.plot(filtered_df['Date'], filtered_df['Sale'], label=f'Sales from {start_date} to {end_date}')
|
94 |
-
ax_filtered.set_xlabel('Date')
|
95 |
-
ax_filtered.set_ylabel('Sale')
|
96 |
-
ax_filtered.set_title(f'Sales Forecasting from {start_date} to {end_date}')
|
97 |
-
ax_filtered.legend()
|
98 |
-
st.pyplot(fig_filtered)
|
99 |
-
else:
|
100 |
-
st.error("The uploaded file must contain at least 'Date' and 'Sales' columns.")
|
101 |
-
|
102 |
-
if __name__ == "__main__":
|
103 |
-
main()
|
|
|
49 |
|
50 |
if __name__ == "__main__":
|
51 |
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|