Commit
·
b90f6cc
1
Parent(s):
5a3b63d
Guardar mis cambios locales
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ def load_model():
|
|
10 |
except Exception as e:
|
11 |
return None, f"Failed to load model: {str(e)}"
|
12 |
|
13 |
-
def forecast_sales(uploaded_file, forecast_period=30):
|
14 |
if uploaded_file is None:
|
15 |
return "No file uploaded.", None
|
16 |
|
@@ -24,21 +24,26 @@ def forecast_sales(uploaded_file, forecast_period=30):
|
|
24 |
df['Date'] = pd.to_datetime(df['Date'])
|
25 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
26 |
|
|
|
|
|
|
|
27 |
arima_model, error = load_model()
|
28 |
if arima_model is None:
|
29 |
return error, None
|
30 |
|
31 |
try:
|
|
|
32 |
forecast = arima_model.get_forecast(steps=forecast_period)
|
33 |
-
forecast_index = pd.date_range(df['ds'].max(), periods=forecast_period + 1, freq='D')[1:]
|
34 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
35 |
except Exception as e:
|
36 |
return f"Failed during forecasting: {str(e)}", None
|
37 |
|
38 |
try:
|
39 |
fig, ax = plt.subplots(figsize=(10, 6))
|
40 |
-
|
41 |
-
ax.plot(
|
|
|
|
|
42 |
ax.set_xlabel('Date')
|
43 |
ax.set_ylabel('Sales')
|
44 |
ax.set_title('Sales Forecasting with ARIMA')
|
@@ -51,12 +56,14 @@ def setup_interface():
|
|
51 |
with gr.Blocks() as demo:
|
52 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
53 |
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
|
|
|
|
54 |
forecast_button = gr.Button("Forecast Sales")
|
55 |
output_text = gr.Textbox(visible=True)
|
56 |
output_plot = gr.Plot()
|
57 |
forecast_button.click(
|
58 |
forecast_sales,
|
59 |
-
inputs=[file_input, gr.Slider(1, 60, step=1, label="Forecast Period (days)", value=30)],
|
60 |
outputs=[output_text, output_plot]
|
61 |
)
|
62 |
return demo
|
|
|
10 |
except Exception as e:
|
11 |
return None, f"Failed to load model: {str(e)}"
|
12 |
|
13 |
+
def forecast_sales(uploaded_file, start_date, end_date, forecast_period=30):
|
14 |
if uploaded_file is None:
|
15 |
return "No file uploaded.", None
|
16 |
|
|
|
24 |
df['Date'] = pd.to_datetime(df['Date'])
|
25 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
26 |
|
27 |
+
# Filtrar los datos según el rango de fechas seleccionado por el usuario
|
28 |
+
df_filtered = df[(df['ds'] >= pd.to_datetime(start_date)) & (df['ds'] <= pd.to_datetime(end_date))]
|
29 |
+
|
30 |
arima_model, error = load_model()
|
31 |
if arima_model is None:
|
32 |
return error, None
|
33 |
|
34 |
try:
|
35 |
+
forecast_index = pd.date_range(start=pd.to_datetime(end_date), periods=forecast_period + 1, freq='D')[1:]
|
36 |
forecast = arima_model.get_forecast(steps=forecast_period)
|
|
|
37 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
38 |
except Exception as e:
|
39 |
return f"Failed during forecasting: {str(e)}", None
|
40 |
|
41 |
try:
|
42 |
fig, ax = plt.subplots(figsize=(10, 6))
|
43 |
+
# Dibujar las ventas actuales en rojo
|
44 |
+
ax.plot(df_filtered['ds'], df_filtered['y'], label='Actual Sales', color='red')
|
45 |
+
# Dibujar la predicción en azul
|
46 |
+
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='blue', linestyle='--')
|
47 |
ax.set_xlabel('Date')
|
48 |
ax.set_ylabel('Sales')
|
49 |
ax.set_title('Sales Forecasting with ARIMA')
|
|
|
56 |
with gr.Blocks() as demo:
|
57 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
58 |
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
59 |
+
start_date_input = gr.Date(label="Start Date")
|
60 |
+
end_date_input = gr.Date(label="End Date")
|
61 |
forecast_button = gr.Button("Forecast Sales")
|
62 |
output_text = gr.Textbox(visible=True)
|
63 |
output_plot = gr.Plot()
|
64 |
forecast_button.click(
|
65 |
forecast_sales,
|
66 |
+
inputs=[file_input, start_date_input, end_date_input, gr.Slider(1, 60, step=1, label="Forecast Period (days)", value=30)],
|
67 |
outputs=[output_text, output_plot]
|
68 |
)
|
69 |
return demo
|