Commit
·
ddde3e7
1
Parent(s):
8ae19a4
Guardar mis cambios locales
Browse files
app.py
CHANGED
@@ -5,21 +5,40 @@ import pickle
|
|
5 |
import gradio as gr
|
6 |
|
7 |
def load_model():
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
11 |
|
12 |
def forecast_sales(uploaded_file, forecast_period=30):
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
df['Date'] = pd.to_datetime(df['Date'])
|
16 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
17 |
|
18 |
-
arima_model = load_model()
|
|
|
|
|
|
|
19 |
forecast = arima_model.get_forecast(steps=forecast_period)
|
20 |
forecast_index = pd.date_range(df['ds'].max(), periods=forecast_period + 1, freq='D')[1:]
|
21 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
22 |
-
|
|
|
|
|
|
|
23 |
# Create the plot
|
24 |
fig, ax = plt.subplots(figsize=(10, 6))
|
25 |
ax.plot(df['ds'], df['y'], label='Historical Sales', color='blue')
|
@@ -28,19 +47,19 @@ def forecast_sales(uploaded_file, forecast_period=30):
|
|
28 |
ax.set_ylabel('Sales')
|
29 |
ax.set_title('Sales Forecasting with ARIMA')
|
30 |
ax.legend()
|
31 |
-
return fig
|
32 |
-
|
33 |
-
return "
|
34 |
|
35 |
def setup_interface():
|
36 |
with gr.Blocks() as demo:
|
37 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
38 |
-
|
39 |
-
|
40 |
-
forecast_button = gr.Button("Forecast Sales")
|
41 |
output_plot = gr.Plot()
|
42 |
-
|
43 |
-
|
|
|
44 |
return demo
|
45 |
|
46 |
if __name__ == "__main__":
|
|
|
5 |
import gradio as gr
|
6 |
|
7 |
def load_model():
|
8 |
+
try:
|
9 |
+
with open('arima_sales_model.pkl', 'rb') as f:
|
10 |
+
arima_model = pickle.load(f)
|
11 |
+
return arima_model
|
12 |
+
except Exception as e:
|
13 |
+
return None, f"Failed to load model: {str(e)}"
|
14 |
|
15 |
def forecast_sales(uploaded_file, forecast_period=30):
|
16 |
+
if uploaded_file is None:
|
17 |
+
return "No file uploaded.", None
|
18 |
+
|
19 |
+
try:
|
20 |
+
df = pd.read_csv(uploaded_file)
|
21 |
+
except Exception as e:
|
22 |
+
return f"Failed to read the uploaded CSV file: {str(e)}", None
|
23 |
+
|
24 |
+
if 'Date' not in df.columns or 'Sale' not in df.columns:
|
25 |
+
return "The uploaded file must contain 'Date' and 'Sale' columns.", None
|
26 |
+
|
27 |
+
try:
|
28 |
df['Date'] = pd.to_datetime(df['Date'])
|
29 |
df = df.rename(columns={'Date': 'ds', 'Sale': 'y'})
|
30 |
|
31 |
+
arima_model, error = load_model()
|
32 |
+
if arima_model is None:
|
33 |
+
return error, None
|
34 |
+
|
35 |
forecast = arima_model.get_forecast(steps=forecast_period)
|
36 |
forecast_index = pd.date_range(df['ds'].max(), periods=forecast_period + 1, freq='D')[1:]
|
37 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
38 |
+
except Exception as e:
|
39 |
+
return f"Failed during forecasting: {str(e)}", None
|
40 |
+
|
41 |
+
try:
|
42 |
# Create the plot
|
43 |
fig, ax = plt.subplots(figsize=(10, 6))
|
44 |
ax.plot(df['ds'], df['y'], label='Historical Sales', color='blue')
|
|
|
47 |
ax.set_ylabel('Sales')
|
48 |
ax.set_title('Sales Forecasting with ARIMA')
|
49 |
ax.legend()
|
50 |
+
return None, fig
|
51 |
+
except Exception as e:
|
52 |
+
return f"Failed to generate plot: {str(e)}", None
|
53 |
|
54 |
def setup_interface():
|
55 |
with gr.Blocks() as demo:
|
56 |
gr.Markdown("## MLCast v1.1 - Intelligent Sales Forecasting System")
|
57 |
+
file_input = gr.File(label="Upload your store data here (must contain Date and Sales)")
|
58 |
+
forecast_button = gr.Button("Forecast Sales")
|
|
|
59 |
output_plot = gr.Plot()
|
60 |
+
output_text = gr.Textbox()
|
61 |
+
forecast_button.click(forecast_sales, inputs=[file_input], outputs=[output_text, output_plot])
|
62 |
+
|
63 |
return demo
|
64 |
|
65 |
if __name__ == "__main__":
|