Commit
·
e0711c8
1
Parent(s):
93a5668
Guardar mis cambios locales
Browse files
app.py
CHANGED
@@ -23,7 +23,7 @@ def parse_date(date_str):
|
|
23 |
except ValueError:
|
24 |
return None, None, "Date format should be 'Month-Year', e.g., 'January-2024'."
|
25 |
|
26 |
-
def forecast_sales(uploaded_file, start_date_str, end_date_str
|
27 |
if uploaded_file is None:
|
28 |
return "No file uploaded.", None, "Please upload a file."
|
29 |
|
@@ -49,21 +49,18 @@ def forecast_sales(uploaded_file, start_date_str, end_date_str, forecast_period=
|
|
49 |
return None, error, "Failed to load ARIMA model."
|
50 |
|
51 |
try:
|
52 |
-
|
53 |
-
|
54 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
55 |
-
|
56 |
-
return None, f"Failed during forecasting: {str(e)}", "Forecasting failed."
|
57 |
-
|
58 |
-
try:
|
59 |
fig, ax = plt.subplots(figsize=(10, 6))
|
60 |
-
ax.plot(df_filtered['ds'], df_filtered['y'], label='Actual Sales', color='
|
61 |
-
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='
|
62 |
ax.set_xlabel('Date')
|
63 |
ax.set_ylabel('Sales')
|
64 |
ax.set_title('Sales Forecasting with ARIMA')
|
65 |
ax.legend()
|
66 |
-
return
|
67 |
except Exception as e:
|
68 |
return None, f"Failed to generate plot: {str(e)}", "Plotting failed."
|
69 |
|
@@ -80,7 +77,7 @@ def setup_interface():
|
|
80 |
forecast_button.click(
|
81 |
forecast_sales,
|
82 |
inputs=[file_input, start_date_input, end_date_input],
|
83 |
-
outputs=[
|
84 |
)
|
85 |
return demo
|
86 |
|
|
|
23 |
except ValueError:
|
24 |
return None, None, "Date format should be 'Month-Year', e.g., 'January-2024'."
|
25 |
|
26 |
+
def forecast_sales(uploaded_file, start_date_str, end_date_str):
|
27 |
if uploaded_file is None:
|
28 |
return "No file uploaded.", None, "Please upload a file."
|
29 |
|
|
|
49 |
return None, error, "Failed to load ARIMA model."
|
50 |
|
51 |
try:
|
52 |
+
forecast = arima_model.get_forecast(steps=60)
|
53 |
+
forecast_index = pd.date_range(start=end_date, periods=61, freq='D')[1:]
|
54 |
forecast_df = pd.DataFrame({'Date': forecast_index, 'Sales Forecast': forecast.predicted_mean})
|
55 |
+
|
|
|
|
|
|
|
56 |
fig, ax = plt.subplots(figsize=(10, 6))
|
57 |
+
ax.plot(df_filtered['ds'], df_filtered['y'], label='Actual Sales', color='blue')
|
58 |
+
ax.plot(forecast_df['Date'], forecast_df['Sales Forecast'], label='Sales Forecast', color='red', linestyle='--')
|
59 |
ax.set_xlabel('Date')
|
60 |
ax.set_ylabel('Sales')
|
61 |
ax.set_title('Sales Forecasting with ARIMA')
|
62 |
ax.legend()
|
63 |
+
return fig, "File loaded and processed successfully."
|
64 |
except Exception as e:
|
65 |
return None, f"Failed to generate plot: {str(e)}", "Plotting failed."
|
66 |
|
|
|
77 |
forecast_button.click(
|
78 |
forecast_sales,
|
79 |
inputs=[file_input, start_date_input, end_date_input],
|
80 |
+
outputs=[output_plot, output_message]
|
81 |
)
|
82 |
return demo
|
83 |
|