Spaces:
Sleeping
Sleeping
Delete FYP RAG/summerization-app/app.py
Browse files- FYP RAG/summerization-app/app.py +0 -446
FYP RAG/summerization-app/app.py
DELETED
@@ -1,446 +0,0 @@
|
|
1 |
-
from flask import Flask, render_template, request, send_file,abort,send_from_directory
|
2 |
-
import torch
|
3 |
-
from werkzeug.security import generate_password_hash, check_password_hash
|
4 |
-
from flask import Flask, render_template, request, redirect, url_for, jsonify, session
|
5 |
-
|
6 |
-
from flask import Flask, request, jsonify
|
7 |
-
from pymongo import MongoClient
|
8 |
-
import pickle
|
9 |
-
from pymongo import MongoClient
|
10 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
11 |
-
from PyPDF2 import PdfReader
|
12 |
-
from docx import Document
|
13 |
-
import re
|
14 |
-
import seaborn as sns
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
import os
|
17 |
-
import string
|
18 |
-
import requests
|
19 |
-
from bs4 import BeautifulSoup
|
20 |
-
from flask import jsonify
|
21 |
-
from flask import Flask, render_template, request, jsonify
|
22 |
-
from sentence_transformers import SentenceTransformer
|
23 |
-
import faiss
|
24 |
-
import fitz
|
25 |
-
import groq
|
26 |
-
import PyPDF2
|
27 |
-
import numpy as np
|
28 |
-
from flask import Flask, render_template, request, redirect, url_for, flash, session
|
29 |
-
from flask_argon2 import Argon2
|
30 |
-
from pymongo import MongoClient
|
31 |
-
import os
|
32 |
-
import pdfplumber
|
33 |
-
from groq import Groq
|
34 |
-
import logging
|
35 |
-
logging.getLogger("pdfminer").setLevel(logging.ERROR)
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
app = Flask(__name__)
|
40 |
-
|
41 |
-
GROQ_API_KEY = "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"
|
42 |
-
cli = Groq(api_key=GROQ_API_KEY)
|
43 |
-
|
44 |
-
# Load embedding model globally
|
45 |
-
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
46 |
-
|
47 |
-
# Load preprocessed data
|
48 |
-
with open("data//legal_data.pkl", "rb") as f:
|
49 |
-
legal_data = pickle.load(f)
|
50 |
-
|
51 |
-
# Load FAISS indices
|
52 |
-
faiss_indices = {}
|
53 |
-
for law in legal_data:
|
54 |
-
try:
|
55 |
-
index_path = f"data/{law.replace(' ', '_')}_faiss.index"
|
56 |
-
index = faiss.read_index(index_path)
|
57 |
-
faiss_indices[law] = (index, legal_data[law])
|
58 |
-
except Exception as e:
|
59 |
-
print(f"Error loading FAISS index for {law}: {str(e)}")
|
60 |
-
|
61 |
-
# Helper to match section
|
62 |
-
def get_exact_section(section_number, structured_data):
|
63 |
-
for section in structured_data:
|
64 |
-
if section["section_id"].strip() == section_number.strip():
|
65 |
-
return section
|
66 |
-
return None
|
67 |
-
|
68 |
-
# Helper to find relevant section via similarity
|
69 |
-
def find_relevant_section(query, model, index, structured_data, top_k=3):
|
70 |
-
query_embedding = model.encode([query])
|
71 |
-
distances, indices = index.search(np.array(query_embedding), top_k)
|
72 |
-
return [structured_data[i] for i in indices[0] if i < len(structured_data)]
|
73 |
-
|
74 |
-
# Generate answer using Groq
|
75 |
-
def generate_response_with_groq(prompt, section_number, book_name, context):
|
76 |
-
full_prompt = f"According to Section {section_number} of {book_name}, {prompt}"
|
77 |
-
try:
|
78 |
-
response = cli.chat.completions.create(
|
79 |
-
model="llama3-8b-8192",
|
80 |
-
messages=[
|
81 |
-
{
|
82 |
-
"role": "system",
|
83 |
-
"content": "You are a legal assistant providing detailed and comprehensive legal explanations based on Pakistani law. Always provide at least 5-6 sentences per response."
|
84 |
-
},
|
85 |
-
{
|
86 |
-
"role": "user",
|
87 |
-
"content": f"{full_prompt}\n\nContext: {context}"
|
88 |
-
}
|
89 |
-
],
|
90 |
-
max_tokens=1000
|
91 |
-
)
|
92 |
-
return response.choices[0].message.content.strip()
|
93 |
-
except Exception as e:
|
94 |
-
print(f"Error with Groq API: {str(e)}")
|
95 |
-
return "Error communicating with Groq API."
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
# Main route
|
100 |
-
@app.route('/ask', methods=['POST'])
|
101 |
-
def ask():
|
102 |
-
try:
|
103 |
-
# Ensure the request is JSON
|
104 |
-
if not request.is_json:
|
105 |
-
return jsonify({'response': 'Request must be JSON'}), 400
|
106 |
-
|
107 |
-
data = request.get_json()
|
108 |
-
query = data.get('query', '').strip()
|
109 |
-
|
110 |
-
if not query:
|
111 |
-
return jsonify({'response': 'Please enter a valid question.'}), 400
|
112 |
-
|
113 |
-
# Extract section number and book name using regex
|
114 |
-
pattern = r"what\s+is\s+section\s+no\.?\s*(\d+[A-Z]?(?:\(\d+\))?)\s+of\s+(.*)"
|
115 |
-
match = re.search(pattern, query, re.IGNORECASE)
|
116 |
-
|
117 |
-
if match:
|
118 |
-
section_number = match.group(1).strip()
|
119 |
-
book_name = match.group(2).strip()
|
120 |
-
|
121 |
-
matched_book = None
|
122 |
-
for law in legal_data:
|
123 |
-
if book_name.lower() in law.lower():
|
124 |
-
matched_book = law
|
125 |
-
break
|
126 |
-
|
127 |
-
if not matched_book:
|
128 |
-
return jsonify({'response': 'Book name not recognized. Please try again with a valid book name.'}), 404
|
129 |
-
|
130 |
-
index, structured_data = faiss_indices.get(matched_book, (None, None))
|
131 |
-
if index is None or structured_data is None:
|
132 |
-
return jsonify({'response': 'Error loading FAISS index for the selected law.'}), 500
|
133 |
-
|
134 |
-
exact_section = get_exact_section(section_number, structured_data)
|
135 |
-
if exact_section:
|
136 |
-
response = generate_response_with_groq(query, section_number, matched_book, exact_section['content'])
|
137 |
-
return jsonify({'response': response}), 200
|
138 |
-
else:
|
139 |
-
relevant = find_relevant_section(query, embedding_model, index, structured_data)
|
140 |
-
if relevant:
|
141 |
-
response = generate_response_with_groq(query, relevant[0]['section_id'], matched_book, relevant[0]['content'])
|
142 |
-
return jsonify({'response': response}), 200
|
143 |
-
else:
|
144 |
-
return jsonify({'response': 'No relevant section found.'}), 404
|
145 |
-
else:
|
146 |
-
return jsonify({'response': 'Please ask your question in this format: "What is Section No. 302 of Pakistan Penal Code?"'}), 400
|
147 |
-
|
148 |
-
except Exception as e:
|
149 |
-
print(f"Server error at /ask: {str(e)}")
|
150 |
-
return jsonify({'response': 'An internal error occurred. Please try again later.'}), 500
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
# Flask route
|
155 |
-
|
156 |
-
|
157 |
-
# Load the fine-tuned Legal LED model
|
158 |
-
MODEL_NAME = "Izza-shahzad-13/legal-LED-final"
|
159 |
-
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
160 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_NAME)
|
161 |
-
|
162 |
-
# Function to generate summary
|
163 |
-
def generate_summary(text):
|
164 |
-
inputs = tokenizer.encode("summarize: " + text, return_tensors="pt", max_length=1024, truncation=True)
|
165 |
-
outputs = model.generate(inputs, max_length=800, min_length=40, length_penalty=2.0, num_beams=4, early_stopping=True)
|
166 |
-
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
167 |
-
|
168 |
-
# Function to calculate sentence importance scores
|
169 |
-
def calculate_sentence_importance(summary):
|
170 |
-
sentences = summary.split(". ")
|
171 |
-
scores = [len(sentence) for sentence in sentences] # Score based on sentence length
|
172 |
-
max_score = max(scores) if scores else 1
|
173 |
-
normalized_scores = [score / max_score for score in scores]
|
174 |
-
return sentences, normalized_scores
|
175 |
-
|
176 |
-
# Function to generate heatmap
|
177 |
-
def generate_heatmap(scores):
|
178 |
-
plt.figure(figsize=(10, 2))
|
179 |
-
sns.heatmap([scores], annot=True, cmap="coolwarm", xticklabels=False, yticklabels=False, cbar=True)
|
180 |
-
plt.title("Sentence Importance Heatmap")
|
181 |
-
plt.savefig("static/heatmap.png") # Save heatmap image
|
182 |
-
plt.close()
|
183 |
-
|
184 |
-
# Function to highlight sentences in the summary
|
185 |
-
def highlight_summary(sentences, scores):
|
186 |
-
cmap = sns.color_palette("coolwarm", as_cmap=True)
|
187 |
-
highlighted_summary = ""
|
188 |
-
|
189 |
-
for sentence, score in zip(sentences, scores):
|
190 |
-
color = cmap(score)
|
191 |
-
rgb_color = f"rgb({int(color[0]*255)}, {int(color[1]*255)}, {int(color[2]*255)})"
|
192 |
-
highlighted_summary += f'<span style="background-color:{rgb_color};padding:2px;">{sentence}.</span> '
|
193 |
-
|
194 |
-
return highlighted_summary
|
195 |
-
|
196 |
-
# Function to highlight legal terms
|
197 |
-
def highlight_keywords(text):
|
198 |
-
patterns = {
|
199 |
-
'act_with_year': r'\b([A-Za-z\s]+(?:\sAct(?:\s[\d]{4})?))\s*,\s*(\d{4})\b',
|
200 |
-
'article': r'\bArticle\s\d{1,3}(-[A-Z])?\b',
|
201 |
-
'section': r'\bSection\s\d{1,3}[-A-Za-z]?\(?[a-zA-Z]?\)?\b',
|
202 |
-
'date': r'\b(?:[A-Za-z]+)\s\d{4}\b|\b\d{1,2}[-/]\d{1,2}[-/]\d{2,4}\b',
|
203 |
-
'persons': r'\b([A-Z][a-z]+(?:\s[A-Z][a-z]+)*)\b',
|
204 |
-
'ordinance': r'\b([A-Z][a-z\s]+Ordinance(?:,\s\d{4})?)\b', # Example: PEMRA Ordinance, 2002
|
205 |
-
'petition': r'\b(?:[A-Za-z\s]*Petition\sNo\.\s\d+/\d{4})\b', # Example: Constitutional Petition No. 123/2024
|
206 |
-
'act_with_year': r'\b([A-Za-z\s]+(?:\sAct(?:\s\d{4})?)),\s*(\d{4})\b', # Example: Control of Narcotic Substances Act, 1997
|
207 |
-
'article': r'\b(Article\s\d{1,3}(-[A-Z])?)\b', # Example: Article 10-A
|
208 |
-
'section': r'\b(Section\s\d{1,3}(\([a-zA-Z0-9]+\))?)\b', # Example: Section 302(b), Section 9(c), Section 144-A
|
209 |
-
'date': r'\b(?:\d{1,2}[-/]\d{1,2}[-/]\d{2,4}|\d{4}|\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s\d{1,2},?\s\d{4})\b',
|
210 |
-
# Examples: 15/07/2015, July 2015, March 5, 2021, 2023
|
211 |
-
'person': r'\b([A-Z][a-z]+(?:\s[A-Z][a-z]+)+)\b' # Example: Justice Ali Raza
|
212 |
-
|
213 |
-
}
|
214 |
-
|
215 |
-
highlighted_text = text
|
216 |
-
for pattern in patterns.values():
|
217 |
-
highlighted_text = re.sub(pattern, lambda match: f'<span class="highlight">{match.group(0)}</span>', highlighted_text)
|
218 |
-
|
219 |
-
return highlighted_text
|
220 |
-
|
221 |
-
# Function to read uploaded files
|
222 |
-
def read_file(file):
|
223 |
-
if file.filename.endswith(".txt"):
|
224 |
-
return file.read().decode("utf-8")
|
225 |
-
elif file.filename.endswith(".pdf"):
|
226 |
-
pdf_reader = PdfReader(file)
|
227 |
-
return " ".join(page.extract_text() for page in pdf_reader.pages)
|
228 |
-
elif file.filename.endswith(".docx"):
|
229 |
-
doc = Document(file)
|
230 |
-
return " ".join(paragraph.text for paragraph in doc.paragraphs)
|
231 |
-
return None
|
232 |
-
|
233 |
-
# Function to fetch text from a URL
|
234 |
-
def fetch_text_from_url(url):
|
235 |
-
try:
|
236 |
-
response = requests.get(url)
|
237 |
-
response.raise_for_status()
|
238 |
-
|
239 |
-
# Check content type
|
240 |
-
content_type = response.headers.get("Content-Type", "")
|
241 |
-
if "text/html" in content_type: # If it's a webpage
|
242 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
243 |
-
paragraphs = soup.find_all("p") # Extract paragraph text
|
244 |
-
return " ".join([p.get_text() for p in paragraphs])
|
245 |
-
|
246 |
-
elif "text/plain" in content_type: # If it's a plain text file
|
247 |
-
return response.text
|
248 |
-
|
249 |
-
else:
|
250 |
-
return None
|
251 |
-
except Exception as e:
|
252 |
-
print("Error fetching URL:", e)
|
253 |
-
return None
|
254 |
-
|
255 |
-
@app.route("/", methods=["GET", "POST"])
|
256 |
-
def index():
|
257 |
-
document_text = None
|
258 |
-
summary = None
|
259 |
-
heatmap_url = None
|
260 |
-
|
261 |
-
if request.method == "POST":
|
262 |
-
file = request.files.get("file")
|
263 |
-
pasted_text = request.form.get("pasteText", "").strip()
|
264 |
-
url = request.form.get("url", "").strip()
|
265 |
-
|
266 |
-
if file and file.filename:
|
267 |
-
document_text = read_file(file)
|
268 |
-
elif pasted_text:
|
269 |
-
document_text = pasted_text
|
270 |
-
elif url:
|
271 |
-
document_text = fetch_text_from_url(url)
|
272 |
-
|
273 |
-
if document_text:
|
274 |
-
summary = generate_summary(document_text)
|
275 |
-
sentences, scores = calculate_sentence_importance(summary)
|
276 |
-
|
277 |
-
generate_heatmap(scores)
|
278 |
-
|
279 |
-
highlighted_summary = highlight_summary(sentences, scores)
|
280 |
-
highlighted_summary = highlight_keywords(highlighted_summary)
|
281 |
-
|
282 |
-
# Save the summary to a text file
|
283 |
-
with open("summary.txt", "w", encoding="utf-8") as f:
|
284 |
-
f.write(summary)
|
285 |
-
|
286 |
-
return render_template("mainscreen.html", document_text=document_text, summary=highlighted_summary, heatmap_url="static/heatmap.png")
|
287 |
-
|
288 |
-
return render_template("mainscreen.html", document_text=None, summary=None, heatmap_url=None)
|
289 |
-
|
290 |
-
@app.route("/download_summary")
|
291 |
-
def download_summary():
|
292 |
-
file_path = os.path.join(os.getcwd(), "summary.txt")
|
293 |
-
|
294 |
-
if not os.path.exists(file_path):
|
295 |
-
return abort(404, description="File not found")
|
296 |
-
|
297 |
-
return send_file(file_path, as_attachment=True, download_name="summary.txt", mimetype="text/plain")
|
298 |
-
|
299 |
-
|
300 |
-
# Homepage
|
301 |
-
@app.route("/home")
|
302 |
-
def home():
|
303 |
-
return render_template("homepage.html")
|
304 |
-
@app.route("/about")
|
305 |
-
def about():
|
306 |
-
return render_template("aboutpage.html")
|
307 |
-
@app.route("/summarization")
|
308 |
-
def summarization():
|
309 |
-
return render_template("mainscreen.html") # Login Page
|
310 |
-
|
311 |
-
|
312 |
-
@app.route('/lawbooks/<filename>')
|
313 |
-
def serve_pdf(filename):
|
314 |
-
return send_from_directory('static/lawbooks', filename)
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
# MongoDB connection
|
320 |
-
client = MongoClient('mongodb+srv://law:[email protected]/?retryWrites=true&w=majority&appName=law')
|
321 |
-
db = client['chatbotDB']
|
322 |
-
users = db['users']
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
@app.route('/signup', methods=['GET'])
|
327 |
-
def signup():
|
328 |
-
return render_template('signuppage.html') # Render the HTML form
|
329 |
-
|
330 |
-
@app.route('/api/signup', methods=['POST'])
|
331 |
-
def api_signup():
|
332 |
-
# Get JSON data from the request
|
333 |
-
data = request.get_json()
|
334 |
-
first_name = data.get('firstName')
|
335 |
-
last_name = data.get('lastName')
|
336 |
-
email = data.get('email')
|
337 |
-
password = data.get('password')
|
338 |
-
|
339 |
-
# Hash the password for security before storing it in the database
|
340 |
-
hashed_pw = generate_password_hash(password)
|
341 |
-
|
342 |
-
# Check if the user already exists
|
343 |
-
if users.find_one({'email': email}):
|
344 |
-
return jsonify({'message': 'Email already exists!'}), 400
|
345 |
-
|
346 |
-
# Insert the user data into MongoDB
|
347 |
-
users.insert_one({
|
348 |
-
'first_name': first_name,
|
349 |
-
'last_name': last_name,
|
350 |
-
'email': email,
|
351 |
-
'password': hashed_pw
|
352 |
-
})
|
353 |
-
|
354 |
-
# Return a success response
|
355 |
-
return jsonify({'message': 'Signup successful!'}), 201
|
356 |
-
|
357 |
-
# Success page or login page
|
358 |
-
@app.route('/login', methods=['GET', 'POST'])
|
359 |
-
def login():
|
360 |
-
if request.method == 'POST':
|
361 |
-
# Handle POST request for login
|
362 |
-
data = request.get_json()
|
363 |
-
email = data.get('email')
|
364 |
-
password = data.get('password')
|
365 |
-
|
366 |
-
# Log login attempt
|
367 |
-
print(f"Login attempt - Email: {email}")
|
368 |
-
|
369 |
-
# Check if the user exists
|
370 |
-
user = users.find_one({'email': email})
|
371 |
-
if not user:
|
372 |
-
print(f"Login failed - Email '{email}' not found.")
|
373 |
-
return jsonify({'message': 'Invalid email or password!'}), 401
|
374 |
-
|
375 |
-
# Check if the password is correct (compare hashed passwords)
|
376 |
-
if not check_password_hash(user['password'], password):
|
377 |
-
print(f"Login failed - Incorrect password for email '{email}'.")
|
378 |
-
return jsonify({'message': 'Invalid email or password!'}), 401
|
379 |
-
|
380 |
-
# Log successful login
|
381 |
-
print(f"Login successful - Email: {email}")
|
382 |
-
return jsonify({'message': 'Login successful!'}), 200
|
383 |
-
|
384 |
-
# Handle GET request - Show login form (if needed)
|
385 |
-
return render_template('loginpage.html') # This would be the login form page (replace with your template)
|
386 |
-
|
387 |
-
|
388 |
-
@app.route('/reset-password', methods=['GET', 'POST'])
|
389 |
-
def reset_password():
|
390 |
-
if request.method == 'POST':
|
391 |
-
email = request.form['email']
|
392 |
-
new_password = request.form['newPassword']
|
393 |
-
confirm_password = request.form['confirmPassword']
|
394 |
-
|
395 |
-
# Check if passwords match
|
396 |
-
if new_password != confirm_password:
|
397 |
-
return jsonify({'message': 'Passwords do not match!'}), 400
|
398 |
-
|
399 |
-
# Check if user exists
|
400 |
-
user = users.find_one({'email': email})
|
401 |
-
if not user:
|
402 |
-
return jsonify({'message': 'User not found!'}), 404
|
403 |
-
|
404 |
-
# Hash the new password
|
405 |
-
hashed_pw = generate_password_hash(new_password)
|
406 |
-
|
407 |
-
# Update the user's password in the database
|
408 |
-
users.update_one({'email': email}, {'$set': {'password': hashed_pw}})
|
409 |
-
return jsonify({'message': 'Password updated successfully!'}), 200
|
410 |
-
|
411 |
-
return render_template('forgetpasswordpage.html')
|
412 |
-
|
413 |
-
|
414 |
-
contacts_collection = db["contacts"]
|
415 |
-
@app.route('/contact', methods=['GET', 'POST'])
|
416 |
-
def contact():
|
417 |
-
if request.method == 'POST':
|
418 |
-
name = request.form.get('name')
|
419 |
-
email = request.form.get('email')
|
420 |
-
message = request.form.get('message')
|
421 |
-
|
422 |
-
print(f"Name: {name}, Email: {email}, Message: {message}") # Debug
|
423 |
-
|
424 |
-
if not name or not email or not message:
|
425 |
-
return jsonify({'message': 'All fields are required!'}), 400
|
426 |
-
|
427 |
-
contact_data = {
|
428 |
-
'name': name,
|
429 |
-
'email': email,
|
430 |
-
'message': message
|
431 |
-
}
|
432 |
-
|
433 |
-
contacts_collection.insert_one(contact_data)
|
434 |
-
return jsonify({'message': f'Thank you, {name}! Your message has been sent successfully.',
|
435 |
-
'status': 'success'}), 200
|
436 |
-
|
437 |
-
return render_template('contactpage.html')
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
if __name__ == "__main__":
|
446 |
-
app.run(host="0.0.0.0", port=7860, debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|