Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +65 -119
src/streamlit_app.py
CHANGED
@@ -1,8 +1,4 @@
|
|
1 |
-
from
|
2 |
-
from io import BytesIO
|
3 |
-
import requests
|
4 |
-
import streamlit as st
|
5 |
-
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
import time
|
@@ -10,151 +6,101 @@ import cv2
|
|
10 |
from numpy import random
|
11 |
import os
|
12 |
import sys
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '
|
16 |
|
17 |
from models.experimental import attempt_load
|
18 |
-
from utils.general import check_img_size,
|
19 |
-
scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
|
20 |
from utils.plots import plot_one_box
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
25 |
if isinstance(new_shape, int):
|
26 |
new_shape = (new_shape, new_shape)
|
27 |
-
|
28 |
-
# Scale ratio (new / old)
|
29 |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
30 |
-
if not scaleup:
|
31 |
r = min(r, 1.0)
|
32 |
-
|
33 |
-
# Compute padding
|
34 |
-
ratio = r, r # width, height ratios
|
35 |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
36 |
-
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
|
37 |
-
|
38 |
-
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
39 |
-
elif scaleFill: # stretch
|
40 |
-
dw, dh = 0.0, 0.0
|
41 |
-
new_unpad = (new_shape[1], new_shape[0])
|
42 |
-
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
43 |
-
|
44 |
-
dw /= 2 # divide padding into 2 sides
|
45 |
dh /= 2
|
46 |
-
|
47 |
-
if shape[::-1] != new_unpad: # resize
|
48 |
-
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
49 |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
50 |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
51 |
-
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
52 |
return img, ratio, (dw, dh)
|
|
|
|
|
53 |
|
54 |
-
|
55 |
-
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
img
|
|
|
65 |
img = np.ascontiguousarray(img)
|
66 |
-
|
67 |
-
|
68 |
-
# Get names and colors
|
69 |
-
names = model.module.names if hasattr(model, 'module') else model.names
|
70 |
-
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
71 |
-
|
72 |
-
# Run inference
|
73 |
-
old_img_w = old_img_h = imgsz
|
74 |
-
old_img_b = 1
|
75 |
-
|
76 |
-
t0 = time.time()
|
77 |
-
img = torch.from_numpy(img).to(device)
|
78 |
-
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
|
79 |
-
img = img/255.0
|
80 |
if img.ndimension() == 3:
|
81 |
img = img.unsqueeze(0)
|
82 |
|
83 |
-
|
84 |
-
# t1 = time_synchronized()
|
85 |
-
with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
|
86 |
pred = model(img)[0]
|
87 |
-
|
88 |
-
|
89 |
-
# Apply NMS
|
90 |
-
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
91 |
-
# t3 = time_synchronized()
|
92 |
-
|
93 |
-
# Process detections
|
94 |
-
# for i, det in enumerate(pred): # detections per image
|
95 |
-
|
96 |
-
gn = torch.tensor(img0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
97 |
|
98 |
det = pred[0]
|
99 |
-
|
100 |
-
|
101 |
-
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
|
102 |
-
|
103 |
-
# Print results
|
104 |
-
s = ''
|
105 |
-
for c in det[:, -1].unique():
|
106 |
-
n = (det[:, -1] == c).sum() # detections per class
|
107 |
-
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
108 |
|
109 |
-
|
110 |
-
|
|
|
111 |
label = f'{names[int(cls)]} {conf:.2f}'
|
112 |
-
plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
st.image(img0, caption="Prediction Result", use_column_width=True)
|
119 |
|
120 |
-
|
121 |
|
122 |
-
|
123 |
-
current_dir = os.path.dirname(os.path.abspath(__file__))
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
device = torch.device("cpu")
|
133 |
-
path = "./"
|
134 |
-
|
135 |
-
# Load model
|
136 |
-
#model = attempt_load(weight_path, map_location=torch.device('cpu')) # load FP32 model
|
137 |
-
ckpt = torch.load(weight_path, map_location=torch.device('cpu'), weights_only=False)
|
138 |
-
model = ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()
|
139 |
|
140 |
-
""
|
141 |
-
|
142 |
-
|
143 |
-
"""
|
144 |
-
option = st.radio("", ["Upload Image", "Image URL"])
|
145 |
-
|
146 |
-
if option == "Upload Image":
|
147 |
-
uploaded_file = st.file_uploader("Please upload an image.")
|
148 |
-
|
149 |
-
if uploaded_file is not None:
|
150 |
-
img = PILImage.create(uploaded_file)
|
151 |
-
detect_modify(img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
|
152 |
-
else:
|
153 |
-
url = st.text_input("Please input a url.")
|
154 |
-
if url != "":
|
155 |
try:
|
156 |
response = requests.get(url)
|
157 |
-
|
158 |
-
detect_modify(pil_img, model, conf=conf, imgsz=imgsz, conf_thres=conf_thres, iou_thres=iou_thres)
|
159 |
except:
|
160 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
|
|
|
|
|
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
import time
|
|
|
6 |
from numpy import random
|
7 |
import os
|
8 |
import sys
|
9 |
+
from io import BytesIO
|
10 |
+
import requests
|
11 |
+
import streamlit as st
|
12 |
|
13 |
+
# 將 yolov7 的副程式路徑加入系統中
|
14 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), 'yolov7')))
|
15 |
|
16 |
from models.experimental import attempt_load
|
17 |
+
from utils.general import check_img_size, non_max_suppression, scale_coords
|
|
|
18 |
from utils.plots import plot_one_box
|
19 |
|
20 |
+
# Device 設定
|
21 |
+
device = torch.device("cpu")
|
22 |
+
|
23 |
+
# 圖像 resize(YOLO 專用)
|
24 |
+
def letterbox(img, new_shape=(640, 640), color=(114, 114, 114), auto=False, scaleFill=False, scaleup=True, stride=32):
|
25 |
+
shape = img.shape[:2]
|
26 |
if isinstance(new_shape, int):
|
27 |
new_shape = (new_shape, new_shape)
|
|
|
|
|
28 |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
29 |
+
if not scaleup:
|
30 |
r = min(r, 1.0)
|
31 |
+
ratio = r, r
|
|
|
|
|
32 |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
33 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1]
|
34 |
+
dw /= 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
dh /= 2
|
36 |
+
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
|
|
|
|
|
37 |
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
38 |
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
39 |
+
img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color)
|
40 |
return img, ratio, (dw, dh)
|
41 |
+
# 模型路徑(確保 best.pt 放在同一層)
|
42 |
+
weight_path = os.path.join(os.path.dirname(__file__), "best.pt")
|
43 |
|
44 |
+
# 載入模型
|
45 |
+
ckpt = torch.load(weight_path, map_location=device)
|
46 |
+
model = ckpt['ema' if ckpt.get('ema') else 'model'].float().fuse().eval()
|
47 |
|
48 |
+
# 加入自定義類別名稱(必要,否則無法畫框標籤)
|
49 |
+
model.names = ['WithMask', 'WithoutMask'] # 替換為你的類別
|
50 |
|
51 |
+
# 推論主函式
|
52 |
+
def detect(img_pil, conf_thres=0.25, iou_thres=0.45, imgsz=640):
|
53 |
+
img0 = np.array(img_pil.convert('RGB'))
|
54 |
+
img = cv2.cvtColor(img0, cv2.COLOR_RGB2BGR)
|
55 |
+
img, _, _ = letterbox(img, new_shape=imgsz)
|
56 |
+
img = img[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, CHW
|
57 |
img = np.ascontiguousarray(img)
|
58 |
+
img = torch.from_numpy(img).to(device).float() / 255.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
if img.ndimension() == 3:
|
60 |
img = img.unsqueeze(0)
|
61 |
|
62 |
+
with torch.no_grad():
|
|
|
|
|
63 |
pred = model(img)[0]
|
64 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
det = pred[0]
|
67 |
+
names = model.names
|
68 |
+
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
if det is not None and len(det):
|
71 |
+
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], img0.shape).round()
|
72 |
+
for *xyxy, conf, cls in det:
|
73 |
label = f'{names[int(cls)]} {conf:.2f}'
|
74 |
+
plot_one_box(xyxy, img0, label=label, color=colors[int(cls)], line_thickness=2)
|
75 |
|
76 |
+
return Image.fromarray(img0)
|
77 |
+
st.set_page_config(page_title="YOLOv7 Mask Detection", layout="centered")
|
78 |
+
st.title("🛡️ YOLOv7 Mask Detection")
|
79 |
+
st.write("請上傳圖片或提供圖片網址,辨識是否有戴口罩。")
|
|
|
80 |
|
81 |
+
option = st.radio("選擇輸入方式:", ["上傳圖片", "輸入圖片網址"])
|
82 |
|
83 |
+
img = None
|
|
|
84 |
|
85 |
+
if option == "上傳圖片":
|
86 |
+
uploaded_file = st.file_uploader("請上傳圖片(格式如 JPG, PNG)", type=["jpg", "jpeg", "png"])
|
87 |
+
if uploaded_file:
|
88 |
+
try:
|
89 |
+
img = Image.open(uploaded_file).convert("RGB")
|
90 |
+
except:
|
91 |
+
st.error("⚠️ 無法讀取圖片,請確認格式是否正確。")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
elif option == "輸入圖片網址":
|
94 |
+
url = st.text_input("請貼上圖片網址")
|
95 |
+
if url:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
try:
|
97 |
response = requests.get(url)
|
98 |
+
img = Image.open(BytesIO(response.content)).convert("RGB")
|
|
|
99 |
except:
|
100 |
+
st.error("⚠️ 無法從網址讀取圖片,請確認連結是否正確。")
|
101 |
+
|
102 |
+
if img:
|
103 |
+
st.image(img, caption="原始圖片", use_column_width=True)
|
104 |
+
with st.spinner("模型推論中,請稍候..."):
|
105 |
+
result_img = detect(img)
|
106 |
+
st.image(result_img, caption="模型辨識結果", use_column_width=True)
|