File size: 2,807 Bytes
6e124c0
 
 
 
 
a884bba
6e124c0
 
 
 
 
 
 
 
 
 
a884bba
6e124c0
 
 
 
 
 
 
 
 
 
 
a884bba
6e124c0
 
 
 
f12b6ac
 
6e124c0
 
 
 
 
a884bba
6e124c0
 
 
 
 
 
 
f12b6ac
6e124c0
 
 
 
 
 
a884bba
6e124c0
 
 
b24b865
f12b6ac
 
b24b865
 
 
 
 
 
 
a884bba
b24b865
 
 
f12b6ac
 
 
 
6e124c0
 
 
 
 
a884bba
6e124c0
 
 
 
f12b6ac
6e124c0
 
 
 
 
 
 
a884bba
6e124c0
 
f12b6ac
 
 
 
 
 
 
 
 
 
 
 
 
6e124c0
cff7f74
6e124c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0",
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1",
   "metadata": {},
   "outputs": [],
   "source": [
    "import copy\n",
    "\n",
    "import torch"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2",
   "metadata": {},
   "outputs": [],
   "source": [
    "from rubik.cube import Cube\n",
    "from rubik.action import build_actions_tensor\n",
    "from rubik.interface.plot import CubeVisualizer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3",
   "metadata": {},
   "outputs": [],
   "source": [
    "size = 3\n",
    "\n",
    "actions = build_actions_tensor(size)\n",
    "\n",
    "cube = Cube(size)\n",
    "print(cube)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4",
   "metadata": {},
   "outputs": [],
   "source": [
    "cubis = copy.deepcopy(cube)\n",
    "cubis.rotate(\"X2 X1i Y1i Z1i Y0 Z0i X2 X1i Y1i Z1i Y0 Z0i \")\n",
    "\n",
    "print(cubis)\n",
    "print(cubis.history)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5",
   "metadata": {},
   "outputs": [],
   "source": [
    "visualizer = CubeVisualizer(size=cubis.size)\n",
    "layout_args = {\"autosize\": False, \"width\": 600, \"height\": 600}\n",
    "\n",
    "visualizer(cubis.coordinates, cubis.state, cubis.size).update_layout(**layout_args).show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6",
   "metadata": {},
   "outputs": [],
   "source": [
    "cubis = copy.deepcopy(cube)\n",
    "cubis.scramble(2000, seed=0)\n",
    "print(cubis)\n",
    "print(cubis.history)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7",
   "metadata": {},
   "outputs": [],
   "source": [
    "cubis = copy.deepcopy(cube)\n",
    "cubis.rotate(\"X2 X1i Y1i Z1i Y0 Z0i X2 X1i Y1i Z1i Y0 Z0i \" * 1000)\n",
    "print(cubis)\n",
    "print(cubis.history)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8",
   "metadata": {},
   "outputs": [],
   "source": [
    "(actions[0, 2, 0].type(torch.float32) @ actions[0, 1, 1].type(torch.float32)).type(torch.int8)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Rubik-Tensor",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}