Create app_BACKUP_09032024.py
Browse files- app_BACKUP_09032024.py +159 -0
app_BACKUP_09032024.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# JB:
|
| 2 |
+
# LangChainDeprecationWarning: Importing embeddings from langchain is deprecated.
|
| 3 |
+
# Importing from langchain will no longer be supported as of langchain==0.2.0.
|
| 4 |
+
# Please import from langchain-community instead:
|
| 5 |
+
# `from langchain_community.embeddings import FastEmbedEmbeddings`.
|
| 6 |
+
# To install langchain-community run `pip install -U langchain-community`.
|
| 7 |
+
from langchain_community.embeddings import FastEmbedEmbeddings
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import streamlit as st
|
| 11 |
+
from langchain_groq import ChatGroq
|
| 12 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 13 |
+
# JB:
|
| 14 |
+
from langchain_community.document_loaders import PyPDFLoader
|
| 15 |
+
from langchain_community.embeddings import OllamaEmbeddings
|
| 16 |
+
|
| 17 |
+
# JB:
|
| 18 |
+
from langchain.embeddings import FastEmbedEmbeddings
|
| 19 |
+
from langchain_community.document_loaders import PyPDFDirectoryLoader
|
| 20 |
+
|
| 21 |
+
# JB:
|
| 22 |
+
# File Directory
|
| 23 |
+
# This covers how to load all documents in a directory.
|
| 24 |
+
# Under the hood, by default this uses the UnstructuredLoader.
|
| 25 |
+
from langchain_community.document_loaders import DirectoryLoader
|
| 26 |
+
from langchain_community.document_loaders import TextLoader
|
| 27 |
+
import chardet
|
| 28 |
+
|
| 29 |
+
from langchain_community.vectorstores import FAISS
|
| 30 |
+
# from langchain.vectorstores import Chroma
|
| 31 |
+
# from langchain_community.vectorstores import Chroma
|
| 32 |
+
|
| 33 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 34 |
+
from langchain.chains.combine_documents import create_stuff_documents_chain
|
| 35 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 36 |
+
from langchain.chains import create_retrieval_chain
|
| 37 |
+
import time
|
| 38 |
+
from dotenv import load_dotenv
|
| 39 |
+
|
| 40 |
+
load_dotenv() #
|
| 41 |
+
|
| 42 |
+
# groq_api_key = os.environ['GROQ_API_KEY']
|
| 43 |
+
groq_api_key = "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" # os.environ['GROQ_API_KEY']
|
| 44 |
+
print("groq_api_key: ", groq_api_key)
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
if "vector" not in st.session_state:
|
| 48 |
+
|
| 49 |
+
# st.session_state.embeddings = OllamaEmbeddings() # ORIGINAL
|
| 50 |
+
st.session_state.embeddings = FastEmbedEmbeddings() # JB
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# st.session_state.loader = WebBaseLoader("https://paulgraham.com/greatwork.html") # ORIGINAL
|
| 54 |
+
# st.session_state.docs = st.session_state.loader.load() # ORIGINAL
|
| 55 |
+
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFLoader.html
|
| 56 |
+
# https://python.langchain.com/docs/integrations/document_loaders/merge_doc
|
| 57 |
+
# from langchain_community.document_loaders import PyPDFLoader
|
| 58 |
+
# loader_pdf = PyPDFLoader("../MachineLearning-Lecture01.pdf")
|
| 59 |
+
#
|
| 60 |
+
# https://stackoverflow.com/questions/60215731/pypdf-to-read-each-pdf-in-a-folder
|
| 61 |
+
#
|
| 62 |
+
# https://api.python.langchain.com/en/latest/document_loaders/langchain_community.document_loaders.pdf.PyPDFDirectoryLoader.html
|
| 63 |
+
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
|
| 64 |
+
# !!!!!
|
| 65 |
+
# PyPDF Directory
|
| 66 |
+
# Load PDFs from directory
|
| 67 |
+
# from langchain_community.document_loaders import PyPDFDirectoryLoader
|
| 68 |
+
# loader = PyPDFDirectoryLoader("example_data/")
|
| 69 |
+
# docs = loader.load()
|
| 70 |
+
#
|
| 71 |
+
# ZIE OOK:
|
| 72 |
+
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#using-pypdf
|
| 73 |
+
# Using MathPix
|
| 74 |
+
# Inspired by Daniel Gross's https://gist.github.com/danielgross/3ab4104e14faccc12b49200843adab21
|
| 75 |
+
# from langchain_community.document_loaders import MathpixPDFLoader
|
| 76 |
+
# loader = MathpixPDFLoader("example_data/layout-parser-paper.pdf")
|
| 77 |
+
# data = loader.load()
|
| 78 |
+
# pdf_file_path = "*.pdf" # JB
|
| 79 |
+
# st.session_state.loader = PyPDFLoader(file_path=pdf_file_path).load() # JB
|
| 80 |
+
# st.session_state.loader = PyPDFLoader(*.pdf).load() # JB syntax error *.pdf !
|
| 81 |
+
# st.session_state.loader = PyPDFDirectoryLoader("*.pdf") # JB PyPDFDirectoryLoader("example_data/")
|
| 82 |
+
# chunks = self.text_splitter.split_documents(docs)
|
| 83 |
+
# chunks = filter_complex_metadata(chunks)
|
| 84 |
+
|
| 85 |
+
# JB:
|
| 86 |
+
# https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf#pypdf-directory
|
| 87 |
+
# st.session_state.docs = st.session_state.loader.load()
|
| 88 |
+
# loader = PyPDFDirectoryLoader(".")
|
| 89 |
+
# docs = loader.load()
|
| 90 |
+
# st.session_state.docs = docs
|
| 91 |
+
|
| 92 |
+
# JB:
|
| 93 |
+
# https://python.langchain.com/docs/modules/data_connection/document_loaders/file_directory
|
| 94 |
+
# text_loader_kwargs={'autodetect_encoding': True}
|
| 95 |
+
text_loader_kwargs={'autodetect_encoding': False}
|
| 96 |
+
path = '../'
|
| 97 |
+
# loader = DirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
|
| 98 |
+
# PyPDFDirectoryLoader (TEST):
|
| 99 |
+
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_cls=TextLoader, loader_kwargs=text_loader_kwargs)
|
| 100 |
+
# loader = PyPDFDirectoryLoader(path, glob="**/*.pdf", loader_kwargs=text_loader_kwargs)
|
| 101 |
+
loader = PyPDFDirectoryLoader(path, glob="**/*.pdf")
|
| 102 |
+
docs = loader.load()
|
| 103 |
+
st.session_state.docs = docs
|
| 104 |
+
|
| 105 |
+
st.session_state.text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
| 106 |
+
st.session_state.documents = st.session_state.text_splitter.split_documents(st.session_state.docs)
|
| 107 |
+
# st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
| 108 |
+
st.session_state.vector = FAISS.from_documents(st.session_state.documents, st.session_state.embeddings) # ORIGINAL
|
| 109 |
+
# ZIE:
|
| 110 |
+
# ZIE VOOR EEN APP MET CHROMADB:
|
| 111 |
+
# https://github.com/vndee/local-rag-example/blob/main/rag.py
|
| 112 |
+
# https://raw.githubusercontent.com/vndee/local-rag-example/main/rag.py
|
| 113 |
+
# Chroma.from_documents(documents=chunks, embedding=FastEmbedEmbeddings())
|
| 114 |
+
# st.session_state.vector = Chroma.from_documents(st.session_state.documents, st.session_state.embeddings) # JB
|
| 115 |
+
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
# st.title("Chat with Docs - Groq Edition :) ")
|
| 119 |
+
st.title("Literature Based Research (LBR) - A. Unzicker and J. Bours - Chat with Docs - Groq Edition (Very Fast!) - VERSION 3 - March 8 2024")
|
| 120 |
+
|
| 121 |
+
llm = ChatGroq(
|
| 122 |
+
groq_api_key=groq_api_key,
|
| 123 |
+
model_name='mixtral-8x7b-32768'
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
prompt = ChatPromptTemplate.from_template("""
|
| 127 |
+
Answer the following question based only on the provided context.
|
| 128 |
+
Think step by step before providing a detailed answer.
|
| 129 |
+
I will tip you $200 if the user finds the answer helpful.
|
| 130 |
+
<context>
|
| 131 |
+
{context}
|
| 132 |
+
</context>
|
| 133 |
+
Question: {input}""")
|
| 134 |
+
|
| 135 |
+
document_chain = create_stuff_documents_chain(llm, prompt)
|
| 136 |
+
|
| 137 |
+
retriever = st.session_state.vector.as_retriever()
|
| 138 |
+
retrieval_chain = create_retrieval_chain(retriever, document_chain)
|
| 139 |
+
|
| 140 |
+
prompt = st.text_input("Input your prompt here")
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
# If the user hits enter
|
| 144 |
+
if prompt:
|
| 145 |
+
# Then pass the prompt to the LLM
|
| 146 |
+
start = time.process_time()
|
| 147 |
+
response = retrieval_chain.invoke({"input": prompt})
|
| 148 |
+
print(f"Response time: {time.process_time() - start}")
|
| 149 |
+
|
| 150 |
+
st.write(response["answer"])
|
| 151 |
+
|
| 152 |
+
# With a streamlit expander
|
| 153 |
+
with st.expander("Document Similarity Search"):
|
| 154 |
+
# Find the relevant chunks
|
| 155 |
+
for i, doc in enumerate(response["context"]):
|
| 156 |
+
# print(doc)
|
| 157 |
+
# st.write(f"Source Document # {i+1} : {doc.metadata['source'].split('/')[-1]}")
|
| 158 |
+
st.write(doc.page_content)
|
| 159 |
+
st.write("--------------------------------")
|