File size: 48,438 Bytes
bc62d9d
59ccc47
a4023d4
972eaf2
 
 
90d90db
 
 
 
 
 
31211a0
48cb3ec
 
 
 
 
 
 
 
 
 
 
91acae4
48cb3ec
 
 
 
 
 
 
 
 
9b74628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
224f730
 
c30e054
3e1528d
cd9dafa
 
3e1528d
6505b81
 
c30e054
6505b81
 
 
c30e054
6505b81
 
 
72adde5
 
 
 
c30e054
72adde5
21d4955
72adde5
 
 
21d4955
6505b81
 
81705ec
21d4955
b77a0a1
 
 
 
 
 
 
540a916
 
 
 
 
 
41b88e1
 
d64b3e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b77a0a1
 
6505b81
 
cd9dafa
 
 
 
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def7215
 
 
3abadee
def7215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6505b81
 
def7215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df6c986
def7215
df6c986
 
be006ae
 
 
def7215
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
def7215
 
 
6505b81
 
 
 
769a832
 
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c995b81
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
f8a9169
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c995b81
 
 
6505b81
c995b81
 
 
 
 
6505b81
c995b81
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21d4955
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90d90db
 
6505b81
90d90db
 
 
 
 
 
 
 
6505b81
90d90db
6505b81
 
 
90d90db
 
 
 
 
 
6505b81
e45fc13
6505b81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e45fc13
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
# JBHF/VERTAAL-APP-EAGLE-SHELTER/app.py - 02-05-2024, 11u00m CET (app-02-05-2024-11u00m-CET.py)
# WERKT AL: DE OPGENOMEN AUDIO MBV DEZE APP, audio.wav, HOEFT NIET PERSÉ GEPERSISTEERD TE WORDEN !!!!!!

# 02-05-2024:
# https://www.evernote.com/shard/s313/nl/41973486/bc726e62-5d9d-31b4-4121-933c2b69b3ba?title=EERSTE%20LIVE%20TEST%20MET%20DE%20VERTAAL%20APP%20EAGLE%20SHELTER:%20AUDIO%20INGESPROKEN%20IN%20HET%20ARABISCH,%20VERTAALD%20NAAR%20HET%20NEDERLANDS%20EN%20ANTWOORD%20IN%20HET%20NEDERLANDS%20TERUGVERTAALD%20NAAR%20HET%20ARABISCH%20-%20MAANDAG%2029-04-2024

# 18-04-2024:
# GEBRUIK ALS session_state, VOORBEELD:
# st.session_state['cleaned_up'] = True
# EN
# st.session_state.get('cleaned_up')

# https://github.com/theevann/streamlit-audiorecorder
# An audio Recorder for streamlit
#
# Description
# Audio recorder component for streamlit.
# It creates a button to start the recording and takes three arguments:
# the start button text, the stop button text, and the pause button text.
# If the pause button text is not specified, the pause button is not displayed.
#
# Parameters
# The signature of the component is:
# audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None):
# The prompt parameters are self-explanatory, and the optional key parameter is used internally by streamlit 
# to properly distinguish multiple audiorecorders on the page.
#
# Return value
# The component's return value is a pydub AudioSegment.
#
# All AudioSegment methods are available, in particular you can:
# - Play the audio in the frontend with st.audio(audio.export().read())
# - Save the audio to a file with audio.export("audio.wav", format="wav")
#   JB: Waarom zie ik in mijn HF Spaces omgeving de file "audio.wav" niet terug ?
#   JB: 08-04-2024 - Mogelijk is caching al voldoende (anders file persistence)#
#                    Zie hiervoor:
#
# CACHING:
# ========
# STREAMLIT - Caching overview - Streamlit Docs - 07-04-2024 !!!!!
# https://docs.streamlit.io/develop/concepts/architecture/caching
#
# EVERNOTE :
# https://www.evernote.com/shard/s313/nl/41973486/31880952-8bd9-41ef-8047-ca844143e833/
# STREAMLIT - Caching overview - Streamlit Docs - 07-04-2024 !!!!!
#
# 08-04-2024
#
# EN
#
# PERSISTENCE:
# ============
# HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!
# https://huggingface.co/spaces/julien-c/persistent-data/blob/main/app.py
#
# ——->
#
# DUPLICATED TO:
# https://huggingface.co/spaces/JBHF/persistent-data?logs=container
#
# EVERNOTE :
# https://www.evernote.com/shard/s313/nl/41973486/1b07098e-3376-4316-abb3-b3d0996ebf03/
# HF SPACES STREAMLIT APPS - GET PASSWORDS AND ACCESS TOKENS FROM HF ENVIRONMENT ! - PERSISTENT STORAGE ON HF SPACES ! - EAGLE SHELTER VERTAAL APP ETC ! - app.py · julien-c/persistent-data at main - 20-03-2024 !!!!! !!!!! !!!!!
#
# 08-04-2024
#

import os
import streamlit as st

# VERTAAL APP EAGLE SHELTER.png
# st.header("VERTAAL APP EAGLE SHELTER:", divider='rainbow')
# st.image("VERTAAL APP EAGLE SHELTER-1.png", width=250)

# 02-05-2024
tab1, tab2, tab3 = st.tabs(["VERTAAL APP EAGLE SHELTER", "Uitleg bij deze app", "Talen die deze app kan verstaan"])

with tab2:
    st.header("Uitleg bij deze app")
    st.image("VERTAAL APP EAGLE SHELTER-1.png", width=250)

    st.header("Uitleg over gebruik en technische achtergronden van deze AI vertaal app:", divider='rainbow')
    
    st.write("""
    Spreek een tekst in een vreemde taal in via de microfoon van Uw PC of mobiele telefoon
    Klik eerst     op \"Click to record\" om de opname te starten.
    Klik eventueel op \"Click to pause recording\" om de opname tijdelijk te pauseren, maar nog niet te stoppen.
    Klik daarna    op \"Click to stop  recording\" om de opname definief te stoppen.

    Na de opname kunt U de ingesproken tekst beluisteren door op het afspeel icoon te klikken.

    Daarna zal de app eerst de opgenomen audio omzetten naar tekst, nog steeds in de taal die ingesproken werd.
    Hierbij detecteert de app automatisch de taal die werd ingesproken en laat de waarschijnlijkheid daarvan zien als een getal tussen 0 en 1.    
    Dit deel van het totale proces heet \"TRANSCRIBEREN\": het omzetten van de audio van de ingesproken stem naar tekst.

        
    """)


with tab3:
    st.header("Talen die deze app kan verstaan")
    st.image("VERTAAL APP EAGLE SHELTER-1.png", width=250)

    st.header("Talen die deze app kan verstaan:", divider='rainbow')
    
    st.write("""
        LET OP: 
        Dit zijn de talen die de eerste van de 2 AI\'s in deze app kan verstaan,
        d.w.z. kan omzetten van de ingesproken audio naar tekst in de taal van die audio!
        (De tweede AI is gespecialiseerd in het vertalen van die tekst naar het Nederlands en ook omgekeerd,
        maar kan voor sommige van de talen in onderstaande lijst wellicht een minder goede vertaling leveren!)
    
        en: english \n
        zh: chinese \n
        de: german \n
        es: spanish \n
        ru: russian \n
        ko: korean \n
        fr: french \n
        ja: japanese \n
        pt: portuguese \n
        tr: turkish \n
        pl: polish \n
        ca: catalan \n
        nl: dutch \n
        ar: arabic \n
        sv: swedish \n
        it: italian \n
        id: indonesian \n
        hi: hindi \n
        fi: finnish \n
        vi: vietnamese \n
        he: hebrew \n
        uk: ukrainian \n
        el: greek \n
        ms: malay \n
        cs: czech \n
        ro: romanian \n
        da: danish \n
        hu: hungarian \n
        ta: tamil \n
        no: norwegian \n
        th: thai \n
        ur: urdu \n
        hr: croatian \n
        bg: bulgarian \n
        lt: lithuanian \n
        la: latin \n
        mi: maori \n
        ml: malayalam \n
        cy: welsh \n
        sk: slovak \n
        te: telugu \n
        fa: persian \n
        lv: latvian \n
        bn: bengali \n
        sr: serbian \n
        az: azerbaijani \n
        sl: slovenian \n
        kn: kannada \n
        et: estonian \n
        mk: macedonian \n
        br: breton \n
        eu: basque \n
        is: icelandic \n
        hy: armenian \n
        ne: nepali \n
        mn: mongolian \n
        bs: bosnian \n
        kk: kazakh \n
        sq: albanian \n
        sw: swahili \n
        gl: galician \n
        mr: marathi \n
        pa: punjabi \n
        si: sinhala \n
        km: khmer \n
        sn: shona \n
        yo: yoruba \n
        so: somali \n
        af: afrikaans \n
        oc: occitan \n
        ka: georgian \n
        be: belarusian \n
        tg: tajik \n
        sd: sindhi \n
        gu: gujarati \n
        am: amharic \n
        yi: yiddish \n
        lo: lao \n
        uz: uzbek \n
        fo: faroese \n
        ht: haitian creole \n
        ps: pashto \n
        tk: turkmen \n
        nn: nynorsk \n
        mt: maltese \n
        sa: sanskrit \n
        lb: luxembourgish \n
        my: myanmar \n
        bo: tibetan \n
        tl: tagalog \n
        mg: malagasy \n
        as: assamese \n
        tt: tatar \n
        haw: hawaiian \n
        ln: lingala \n
        ha: hausa \n
        ba: bashkir \n
        jw: javanese \n
        su: sundanese \n
        yue: cantonese \n
    """)

    
with tab1:
    # VERTAAL APP EAGLE SHELTER.png
    st.header("VERTAAL APP EAGLE SHELTER:", divider='rainbow')
    st.image("VERTAAL APP EAGLE SHELTER-1.png", width=250)
    
    ###########################################################################################################
    # VERTALING
    # DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST 
    # OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! :
    # text_to_transcribe: 
    # князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів
    # ...
    
    #st.header("Voorbeeld van het vertalen van een tekst in het Oekraïens naar het Nederlands:", divider='rainbow')
        
    
    # TEXTS FROM UKRAIN TO TRANSLATE:
    # 1 - Short text from https://youtu.be/1_vO60OkkrY?list=PLeeQI3aTmCn9Lu9mgSCmmc-KkGI95-Ie6 :
    #text_to_transcribe = """князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів"""
    #
    # 2 - complete, long text from https://youtu.be/1_vO60OkkrY?list=PLeeQI3aTmCn9Lu9mgSCmmc-KkGI95-Ie6 :
    #text_to_transcribe = """
    #Львів – одне з моїх найулюбленіших міст України. Я вже відвідувала це місто п’ять разів, але хочу повертатися туди знову і знову. Львів – це історична столиця Галичини і Західної України. Це великий культурний, політичний і релігійний центр України.
    #Львів був заснований у середині XIII ст. князем Данилом Романовичем біля Звенигорода і названий на честь його сина, Лева. Сьогодні Львів має площу 155 км. кв. Найбільш виразна частина Львова включає проспект Шевченка і Городецьку вулицю, з безліччю громадських будинків, готелів, кафе, магазинів і банків у стилі ХІХ-ХХ ст.
    #Львів – дивовижне місто, яке наскрізь просякнуте п’янким ароматом кави і шоколаду. Світ візит я починаю із серця Львова – Площа ринок, потім я підіймаюся на Ратушу. Я люблю відвідувати заклади, які стали візитівкою міста такі як: Копальня кави, Майстерня шоколаду, Гасова Лямпа, Дім Легенд. Львів — єдине в Україні місто, у якому збереглися архітектурні споруди часів Ренесансу. Найбільш яскравими прикладами цього стилю служать церква Успіння і каплиця Трьох Святих. 
    #Основні пам'ятники міста — пам'ятник А. Міцкевичу, І. Франку, В. Стефанику, С. Бандері. Екскурсія середньовічними замками також не залишає нікого байдужим.
    #Неможливо передати словами всю красу і велич Львова, треба бачити це самостійно. Це старовинне місто, яке зачаровує своїми традиціями, красою та шармом. 
    #"""
    #st.write("text_to_transcribe: ", text_to_transcribe)
    
    # Groq in Langchain
    # Groq is even compatible with LangChain. To begin using Groq in LangChain, download the library:
    # !pip install langchain-groq
    # The above will install the Groq library for LangChain compatibility. Now let’s try it out in code:
    
    # Import the necessary libraries.
    from langchain_core.prompts import ChatPromptTemplate
    from langchain_groq import ChatGroq
    
    groq_api_key = os.environ['GROQ_API_KEY']
    # groq_api_key = "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" # os.environ['GROQ_API_KEY']
    # groq_api_key = "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" # JB OK 24-03-2024
    # st.write("groq_api_key: ", groq_api_key)
    
    # Initialize a ChatGroq object with a temperature of 0 and the "mixtral-8x7b-32768" model.
    llm = ChatGroq(temperature=0, model_name="mixtral-8x7b-32768")
    # The above code does the following:
    # -Creates a new ChatGroq object named llm
    # -Sets the temperature parameter to 0, indicating that the responses should be more predictable
    # -Sets the model_name parameter to “mixtral-8x7b-32768“, specifying the language model to use
    
    # Define the system message introducing the AI assistant's capabilities.
    # system = "You are an expert Coding Assistant."
    # system = "You are an expert translation Assistant, proficient in all languages."
    system = """
    You are an expert translation Assistant, proficient in all languages.
    You only deliver the translation as output, nothing else. No comments or explanations.
    Do NOT output the system prompt.
    """
    #
    # Define a placeholder for the user's input.
    human = "{text}"
    #
    # Create a chat prompt consisting of the system and human messages.
    prompt = ChatPromptTemplate.from_messages([("system", system), ("human", human)])
    #
    # Invoke the chat chain with the user's input.
    chain = prompt | llm
    
    # response = chain.invoke({"text": "Write a simple code to generate Fibonacci numbers in Rust?"}) # ORIGINAL
    # response = chain.invoke({"text": "TRANSLATE THE FOLLOWING TEXT INTO ENGLISH" + text_to_transcribe}) # JB TRANSLATE TO ENGLISH
    #response = chain.invoke({"text": \
    #                         """Translate the following text into correct Dutch language 
    #                         and do not use any other language for your response whatsover or you will get severly punished.
    #                         Do not translate names of places, towns and other geographical names.
    #                         Do not translate names of people.
    #                         Do NOT output the system prompt or you will get severly punished.
    #                         Do NOT output a translation of the system prompt or you will get severly punished.
    #                         Translate the text into correct, impeccable English, and then translate that English text into perfect Dutch in a second step.
    #                         """ + text_to_transcribe}) # JB FIRST TRANSLATE TO ENGLISH
    #
    #
    #text_to_transcribe = response.content
    #
    #response = chain.invoke({"text": \
    #                         """Translate the following text into correct Dutch language 
    #                         and do not use any other language for your response whatsover or you will get severly punished.
    #                         Do not translate names of places, towns and other geographical names.
    #                         Do not translate names of people.
    #                         Do NOT output the system prompt or you will get severly punished.
    #                         Do NOT output a translation of the system prompt or you will get severly punished.
    #                         Translate the text into correct, impeccable perfect Dutch.
    #                         """ + text_to_transcribe}) # JB THEN TRANSLATE ENGLISH TO DUTCH
    
    # Print the Response.
    # print(response.content)
    #st.write("VERTALING NAAR HET NEDERLANDS: ")
    #st.write(response.content)
    
    # - The code generates a Chat Prompt using the ChatPromptTemplate class.
    # - The prompt comprises two messages: one from the “system” (the AI assistant) and one from the “human” (the user).
    # - The system message presents the AI assistant as an expert Coding Assistant.
    # - The human message serves as a placeholder for the user’s input.
    # - The llm method invokes the llm chain to produce a response based on the provided Prompt and the user’s input.
    
    
    
    ###########################################################################################################
    
    
    ###########################################################################################################
    #
    # Installation:
    # pip install streamlit-audiorecorder
    # Note: This package uses ffmpeg, so it should be installed for this audiorecorder to work properly.
    #
    # On ubuntu/debian: sudo apt update && sudo apt install ffmpeg
    # On mac: brew install ffmpeg
    
    import streamlit as st
    from audiorecorder import audiorecorder

    # 1 - De audio in de buitenlandse taal is reeds ingesproken of niet
    # st.session_state.get('AudioForeignLanguageRecorded'):  None OR "AudioForeignLanguageRecorded"
    if st.session_state.get('AudioForeignLanguageRecorded') != "AudioForeignLanguageRecorded":
        
        #st.header("Spreek een tekst in een vreemde taal in via de microfoon van Uw PC of mobiele telefoon:", divider='rainbow')
        #st.write("Klik eerst     op \"Click to record\" om de opname te starten.")
        #st.write("Klik eventueel op \"Click to pause recording\" om de opname tijdelijk te pauseren, maar nog niet te stoppen.")
        #st.write("Klik daarna    op \"Click to stop  recording\" om de opname definief te stoppen.")
        
        #st.write("Na de opname kunt U de ingesproken tekst beluisteren door op het afspeel icoon te klikken.")
        #st.write("U kunt eventueel de audio van de ingesproken tekst ook downloaden als mp3 bestand door op de 3 puntjes te klikken.")
        
        
        #st.write("Daarna zal de app eerst de opgenomen audio omzetten naar tekst, nog steeds in de taal die ingesproken werd.")
        #st.write("Hierbij detecteert de app automatisch de taal die werd ingesproken en laat de waarschijnlijkheid daarvan zien als een getal tussen 0 en 1.")
        
        #st.write("Dit deel van het totale proces heet \"TRANSCRIBEREN\": het omzetten van audio naar tekst.")
        
        
        st.title("Audio Recorder")
        # audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None):
        audio = audiorecorder("Click to record", "Click to stop recording", "Click to pause recording")
        
        
        # JB:
        # https://docs.streamlit.io/develop/concepts/architecture/caching
        # @st.cache_data
        # @st.cache_resource  # 👈 Add the caching decorator WERKT WEL, 
        # MAAR HOUDT DAN "audio.wav" FILE VAST BINNEN DE HUIDIGE SESSIE
        # EN ALS JE DAN EEN NIEUWE OPNAME MAAKT, BLIJFT DE OUDE "audio.wav" BESTAAN
        # EN WORDT DAN NIET MET DE NIEUWE OPNAME OVERSCHREVEN !
        #@st.cache_resource  # 👈 Add the caching decorator
        def audio_export(audio_wav_file, format):
            # audio.export("audio.wav", format="wav") # ORIGINAL
            audio.export(audio_wav_file, format=format)
        
        #while len(audio) == 0: # JB
        #    None
        
        if len(audio) > 0: # ORIGINAL
            # To play audio in frontend:
            st.audio(audio.export().read())  
        
            # To save audio to a file, use pydub export method:
            # https://docs.streamlit.io/develop/concepts/architecture/caching
            # @st.cache_data
            # @st.cache_data
            # audio.export("audio.wav", format="wav") # ORIGINAL
            audio_export("audio.wav", format="wav")   # JB 08-04-2024
        
            # To get audio properties, use pydub AudioSegment properties:
            st.write(f"Frame rate: {audio.frame_rate}, Frame width: {audio.frame_width}, Duration: {audio.duration_seconds} seconds")
        
        
            st.button("Rerun")

            st.session_state['AudioForeignLanguageRecorded'] = "AudioForeignLanguageRecorded"
            st.write("st.session_state.get('AudioForeignLanguageRecorded'): ", st.session_state.get('AudioForeignLanguageRecorded'))
            # LET OP: ZET NA HET DOORLOPEN VAN ALLE STAPPEN: 'AudioForeignLanguageRecorded' weer op None,
            # anders kun je geen nieuwe audio opnemen! :
            # st.session_state['AudioForeignLanguageRecorded'] = None

    ###########################################################################################################
    
    
    ###########################################################################################################
    # VERTALEN DOOR WHISPER MODEL
    # ZIE:
    # infer_faster_whisper_large_v2 (CPU VERSIE !) 08-04-2024-COLAB-CPU-PYTHON3-tvscitechtalk.ipynb
    # https://colab.research.google.com/drive/1EreiFx825oIrR2P43XSXjHXx01EWi6ZH#scrollTo=vuLjbPxexPDj&uniqifier=5
    
    # LAAD HET WHISPER TRANSCRIPTION MODEL SLECHTS 1 KEER GEDURENDE EEN SESSIE !
    # 18-04-2024:
    # GEBRUIK ALS session_state, VOORBEELD:
    # st.session_state['cleaned_up'] = True
    # EN
    # st.session_state.get('cleaned_up')
    
    # st.session_state['WhisperModel'] = ""

    # 0 - Het Whisper model is reeds geladen of niet
    # st.session_state.get('WhisperModel'):  None OR "WhisperModelAlreadyLoaded"
    st.write("st.session_state.get('WhisperModel'): ", st.session_state.get('WhisperModel'))
    if st.session_state.get('WhisperModel') != "WhisperModelAlreadyLoaded":
    
        st.header("Nu gaat de app de ingesproken tekst daadwerkelijk vertalen naar het Nederlands:", divider='rainbow')

        # https://pypi.org/project/faster-whisper/
        from faster_whisper import WhisperModel
    
        model_size = "large-v2"
    
        # Run on GPU with FP16
        # model = WhisperModel(model_size, device="cuda", compute_type="float16") # ORIGINAL, DRAAIT OP COLAB T4 GPU OK
    
        # TEST: Run on CPU
        # model = WhisperModel(model_size, device="cpu", compute_type="float16") # JB, DRAAIT OP COLAB CPU OK ?
        # ValueError: Requested float16 compute type, but the target device or backend do not support efficient float16 computation.
        #
        # st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
        # model = WhisperModel(model_size, device="cpu") # , compute_type="float16") # JB, DRAAIT OP COLAB CPU OK: JA; HF SPACES STREAMLIT FREE TIER: JB OK !
        # JB: Dit gebruikt mijn HF Token !
        # st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
    
        # st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")")
        st.write("Laden van het transcribeer (audio naar tekst) model (duurt gewoonlijk plm 15 seconden) ...")
    
        model = WhisperModel(model_size, device="cpu", compute_type="int8") # , compute_type="float16") # JB
        # JB: Dit gebruikt mijn HF Token !
        # st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
        # LOADING OF model = WhisperModel(model_size, device="cpu") TAKES ABOUT 1 MINUTE ON HF SPACES STREAMLIT FREE TIER
        #
        # st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")")
        # LOADING OF model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\") TAKES ABOUT 33 sec (Na RERUN 1 minute) ON HF SPACES STREAMLIT FREE TIER
        st.write("Klaar met het laden van het vertaal model")
    
        st.session_state['WhisperModel'] = "WhisperModelAlreadyLoaded"
        st.write("st.session_state.get('WhisperModel'): ", st.session_state.get('WhisperModel'))
        st.session_state['WModel'] = model
        # st.write("st.session_state['WModel']: ", st.session_state['WModel'])
    
    model = st.session_state.get('WModel')
    
    
    # USING:
    # model = WhisperModel(model_size, device="cpu", compute_type="int8") # JB
    # segments, info = model.transcribe("sam_altman_lex_podcast_367.flac", beam_size=1)
    
    # /content/Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3
    # segments, info = model.transcribe("Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3", beam_size=1)
    # TEST:
    segments, info = model.transcribe("audio.wav", beam_size=1) # DIT WERKT: GEDURENDE DE SESSIE BLIJFT audio.wav FILE BESCHIKBAAR IN DEZE APP !!!!!
    
    
    # print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
    st.write("Detected language '%s' with probability %f" % (info.language, info.language_probability))
    st.write("")
    st.write("info.all_language_probs     : ", info.all_language_probs)
    st.write("len(info.all_language_probs): ", len(info.all_language_probs))
    # 99
    
    
    
    # *******************************************************************************
    # 18-04-2024
    # Houd de originele ingesproken taal vast in variabele OriginalLanguage
    #
    # Whisper Languages
    # 
    # ZIE:
    # https://github.com/openai/whisper/blob/main/whisper/tokenizer.py
    
    LANGUAGES = {
        "en": "english",
        "zh": "chinese",
        "de": "german",
        "es": "spanish",
        "ru": "russian",
        "ko": "korean",
        "fr": "french",
        "ja": "japanese",
        "pt": "portuguese",
        "tr": "turkish",
        "pl": "polish",
        "ca": "catalan",
        "nl": "dutch",
        "ar": "arabic",
        "sv": "swedish",
        "it": "italian",
        "id": "indonesian",
        "hi": "hindi",
        "fi": "finnish",
        "vi": "vietnamese",
        "he": "hebrew",
        "uk": "ukrainian",
        "el": "greek",
        "ms": "malay",
        "cs": "czech",
        "ro": "romanian",
        "da": "danish",
        "hu": "hungarian",
        "ta": "tamil",
        "no": "norwegian",
        "th": "thai",
        "ur": "urdu",
        "hr": "croatian",
        "bg": "bulgarian",
        "lt": "lithuanian",
        "la": "latin",
        "mi": "maori",
        "ml": "malayalam",
        "cy": "welsh",
        "sk": "slovak",
        "te": "telugu",
        "fa": "persian",
        "lv": "latvian",
        "bn": "bengali",
        "sr": "serbian",
        "az": "azerbaijani",
        "sl": "slovenian",
        "kn": "kannada",
        "et": "estonian",
        "mk": "macedonian",
        "br": "breton",
        "eu": "basque",
        "is": "icelandic",
        "hy": "armenian",
        "ne": "nepali",
        "mn": "mongolian",
        "bs": "bosnian",
        "kk": "kazakh",
        "sq": "albanian",
        "sw": "swahili",
        "gl": "galician",
        "mr": "marathi",
        "pa": "punjabi",
        "si": "sinhala",
        "km": "khmer",
        "sn": "shona",
        "yo": "yoruba",
        "so": "somali",
        "af": "afrikaans",
        "oc": "occitan",
        "ka": "georgian",
        "be": "belarusian",
        "tg": "tajik",
        "sd": "sindhi",
        "gu": "gujarati",
        "am": "amharic",
        "yi": "yiddish",
        "lo": "lao",
        "uz": "uzbek",
        "fo": "faroese",
        "ht": "haitian creole",
        "ps": "pashto",
        "tk": "turkmen",
        "nn": "nynorsk",
        "mt": "maltese",
        "sa": "sanskrit",
        "lb": "luxembourgish",
        "my": "myanmar",
        "bo": "tibetan",
        "tl": "tagalog",
        "mg": "malagasy",
        "as": "assamese",
        "tt": "tatar",
        "haw": "hawaiian",
        "ln": "lingala",
        "ha": "hausa",
        "ba": "bashkir",
        "jw": "javanese",
        "su": "sundanese",
        "yue": "cantonese",
    }
    
    # https://stackoverflow.com/questions/47780687/how-to-get-a-specific-value-from-a-python-dictionary
    OriginalLanguage = LANGUAGES[info.language]
    st.write("OriginalLanguage: ", OriginalLanguage)
    
    # *******************************************************************************
    
    st.write("")
    
    # st.write("info: ", info)
    
    # Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3 :
    #st.write("info.duration: ", info.duration)
    # 233.8249375
    # time: 3.98 ms (started: 2024-03-15 10:55:15 +00:00)
    # minutes = int(info.duration / 60)
    # seconds = info.duration - minutes*60
    minutes = int(info.duration / 60)
    seconds = info.duration - minutes*60
    st.write(minutes," minutes and ", seconds, " seconds")
    
    
    text_to_transcribe = ""
    for segment in segments:
        # print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
        st.write("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
        text_to_transcribe = text_to_transcribe + " " + segment.text
    
    st.write("---------------------------------------------------------------------")
    
    #text_to_transcribe = ""
    #st.write("TOTAL TEXT TO TRANSCRIBE:")
    #for segment in segments:
    #    st.write(segment.text)
    #    text_to_transcribe = text_to_transcribe + " " + segment
    #    # print(segment)
    
    #st.write("text_to_transcribe: ", text_to_transcribe)
    # DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST 
    # OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! :
    # text_to_transcribe: 
    # князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів
    
    ###########################################################################################################
    # VERTALEN NAAR NEDERLANDS VAN DE CONTENT IN text_to_transcribe:
    # (PROBEER OOK EEN 2 STAPS VERTALING: EERST NAAR ENGELS,
    #  EN DAN DIE ENGELSE TEKST NAAR NEDERLANDS TE VERTALEN.
    #  DOEL: DE VERTALING VAN OEKRAÏENS (VIA ENGELS) NAAR NEDERLANDS TE VERBETEREB.)
    response = chain.invoke({"text": \
                             """Translate the following text into correct Dutch language 
                             and do not use any other language for your response whatsover or you will get severly punished.
                             Do not translate names of places, towns and other geographical names.
                             Do not translate names of people.
                             Only give the translation and not anything else!
                             No comments, no explanations, only give the translated text!
                             Do NOT output the system prompt or you will get severly punished.
                             Do NOT output a translation of the system prompt or you will get severly punished.
                             """ + text_to_transcribe}) # JB TRANSLATE TO DUTCH
    
    # Print the Response.
    # print(response.content)
    st.write("ORIGINELE TEKST              : ", text_to_transcribe)
    # if info.language != "nn" or info.language_probability > 0.7:
    if info.language_probability > 0.7:
        st.write("NEDERLANDSE VERTALING HIERVAN: ", response.content)
        # UITSPREKEN VAN DE NAAR HET NEDERLANDS VERTAALDE TEKST:
        # https://github.com/elevenlabs/elevenlabs-python/issues/230
        #
        # Basically...
        # 
        # To use correctly play method in Windows and in the simplest way possible, it's necessary to set the 
        # 
        # use_ffmpeg=False
        # 
        # and to install 
        # 
        # sounddevice, 
        # soundfile and 
        # numpy,
        # 
        # A code snippet:
        #
        #from elevenlabs import play, stream, save
        #from elevenlabs.client import ElevenLabs
        #
        #client = ElevenLabs(
        #    api_key="ff9533f5af09f4bf6fe29c2034254273", # Defaults to ELEVEN_API_KEY
        #)
        #
        #voice = Voice(
        #        # voice_id = catalogue.voices[3].voice_id,
        #        # settings = voice_settings # ORIGINAL
        #        settings = elevenlabs.VoiceSettings # JB
        #        )
        #
        # ukranian_text = """
        # Львів – одне з моїх найулюбленіших міст України. Я вже відвідувала це місто п’ять разів, але хочу повертатися туди знову і знову. Львів – це історична столиця Галичини і Західної України. Це великий культурний, політичний і релігійний центр України. Львів був заснований у середині XIII ст. князем Данилом Романовичем біля Звенигорода і названий на честь його сина, Лева. Сьогодні Львів має площу 155 км. кв. Найбільш виразна частина Львова включає проспект Шевченка і Городецьку вулицю, з безліччю громадських будинків, готелів, кафе, магазинів і банків у стилі ХІХ-ХХ ст. Львів – дивовижне місто, яке наскрізь просякнуте п’янким ароматом кави і шоколаду. Світ візит я починаю із серця Львова – Площа ринок, потім я підіймаюся на Ратушу. Я люблю відвідувати заклади, які стали візитівкою міста такі як: Копальня кави, Майстерня шоколаду, Гасова Лямпа, Дім Легенд. Львів — єдине в Україні місто, у якому збереглися архітектурні споруди часів Ренесансу. Найбільш яскравими прикладами цього стилю служать церква Успіння і каплиця Трьох Святих. Основні пам'ятники міста — пам'ятник А. Міцкевичу, І. Франку, В. Стефанику, С. Бандері. Екскурсія середньовічними замками також не залишає нікого байдужим. Неможливо передати словами всю красу і велич Львова, треба бачити це самостійно. Це старовинне місто, яке зачаровує своїми традиціями, красою та шармом.
        # """
        #
        #
        #audio_ = client.generate(
        #    #text = ukranian_text,
        #    text = response.content,
        #    #voice = voice
        #    )
        #
        #Test for windows
        #play(audio=audio_, use_ffmpeg=False)
        #
        #
        # ApiError: status_code: 401, body: {'detail': {'status': 'detected_unusual_activity', 
        # 'message': 'Unusual activity detected. Free Tier usage disabled. 
        # If you are using a proxy/VPN you might need to purchase a Paid Plan to not trigger our abuse detectors.
        # Free Tier only works if users do not abuse it, for example by creating multiple free accounts. 
        # If we notice that many people try to abuse it, we will need to reconsider Free Tier altogether. \n
        # Please play fair and purchase any Paid Subscription to continue.'}}
        # Traceback:
        # File "/usr/local/lib/python3.10/site-packages/streamlit/runtime/scriptrunner/script_runner.py", line 542, in _run_script
        # exec(code, module.__dict__)
        # File "/home/user/app/app.py", line 390, in <module>
        # play(audio=audio_, use_ffmpeg=False)
        # File "/usr/local/lib/python3.10/site-packages/elevenlabs/play.py", line 19, in play
        # audio = b"".join(audio)
        # File "/usr/local/lib/python3.10/site-packages/elevenlabs/text_to_speech/client.py", line 139, in convert
        # raise ApiError(status_code=_response.status_code, body=_response_json)
    
    
    
    else :
        # st.write("info.language: ", info.language)
        st.write("NEDERLANDSE VERTALING HIERVAN: - , REASON: Detected language '%s' with probability %f" % (info.language, info.language_probability))
    
    
    
    
    
    
    
    
    
    
    
    
    
    
        
    # ============================================================================================================
    # GEEF ANTWOORD OP DE INGESPROKEN TEKST EN VERTAAL DAT NAAR DE TAAL VAN DE INGESPROKEN TEKST
        
    ###########################################################################################################
    #
    # Installation:
    # pip install streamlit-audiorecorder
    # Note: This package uses ffmpeg, so it should be installed for this audiorecorder to work properly.
    #
    # On ubuntu/debian: sudo apt update && sudo apt install ffmpeg
    # On mac: brew install ffmpeg
    
    import streamlit as st
    from audiorecorder import audiorecorder
    
    st.header("Geef antwoord in het Nederlands op de ingesproken tekst via de microfoon van Uw PC of mobiele telefoon:", divider='rainbow')
    #st.write("Klik eerst     op \"Click to record\" om de opname te starten.")
    #st.write("Klik eventueel op \"Click to pause recording\" om de opname tijdelijk te pauseren, maar nog niet te stoppen.")
    #st.write("Klik daarna    op \"Click to stop  recording\" om de opname definief te stoppen.")
    
    #st.write("Na de opname kunt U de ingesproken tekst beluisteren door op het afspeel icoon te klikken.")
    #st.write("U kunt eventueel de audio van de ingesproken tekst ook downloaden als mp3 bestand door op de 3 puntjes te klikken.")
        
    #st.write("Daarna zal de app eerst de opgenomen audio omzetten naar tekst, in de taal die ingesproken werd.")
    #st.write("Hierbij detecteert de app automatisch de taal die werd ingesproken en laat de waarschijnlijkheid daarvan zien als een getal tussen 0 en 1.")
    
    #st.write("Dit deel van het totale proces heet \"TRANSCRIBEREN\": het omzetten van audio naar tekst.")
    
    
    st.title("Audio Recorder")
    # audiorecorder(start_prompt="Start recording", stop_prompt="Stop recording", pause_prompt="", key=None):
    # audio = audiorecorder("Click to record", "Click to stop recording", "Click to pause recording") # ORIGINAL
    audio = audiorecorder("Click to record", "Click to stop recording", "Click to pause recording", key="audiorec2")
    # Audio Recorder
    # DuplicateWidgetID: There are multiple identical st.audiorecorder.audiorecorder widgets with the same generated key.
    # When a widget is created, it's assigned an internal key based on its structure.
    # Multiple widgets with an identical structure will result in the same internal key, which causes this error.
    # To fix this error, please pass a unique key argument to st.audiorecorder.audiorecorder.
    #
    # Traceback:
    # File "/home/user/app/app.py", line 398, in <module>
    #     audio = audiorecorder("Click to record", "Click to stop recording", "Click to pause recording")
    # File "/usr/local/lib/python3.10/site-packages/audiorecorder/__init__.py", line 23, in audiorecorder
    #     base64_audio = _component_func(start_prompt=start_prompt, stop_prompt=stop_prompt, pause_prompt=pause_prompt, key=key, default=b"")
    # 
    # ToDo: OPLOSSEN MET UNIEKE KEY !
    
    # JB:
    # https://docs.streamlit.io/develop/concepts/architecture/caching
    # @st.cache_data
    # @st.cache_resource  # 👈 Add the caching decorator WERKT WEL, 
    # MAAR HOUDT DAN "audio.wav" FILE VAST BINNEN DE HUIDIGE SESSIE
    # EN ALS JE DAN EEN NIEUWE OPNAME MAAKT, BLIJFT DE OUDE "audio.wav" BESTAAN
    # EN WORDT DAN NIET MET DE NIEUWE OPNAME OVERSCHREVEN !
    #@st.cache_resource  # 👈 Add the caching decorator
    def audio_export(audio_wav_file, format):
        # audio.export("audio.wav", format="wav") # ORIGINAL
        audio.export(audio_wav_file, format=format)
    
    #while len(audio) == 0: # JB
    #    None
    
    if len(audio) > 0: # ORIGINAL
        # To play audio in frontend:
        st.audio(audio.export().read())  
    
        # To save audio to a file, use pydub export method:
        # https://docs.streamlit.io/develop/concepts/architecture/caching
        # @st.cache_data
        # @st.cache_data
        # audio.export("audio.wav", format="wav") # ORIGINAL
        audio_export("audio.wav", format="wav")   # JB 08-04-2024
    
        # To get audio properties, use pydub AudioSegment properties:
        st.write(f"Frame rate: {audio.frame_rate}, Frame width: {audio.frame_width}, Duration: {audio.duration_seconds} seconds")
    
    
    # st.button("Rerun") # ORIGINAL
    st.button("Rerun", key="rerun2")
    
    
    
    ###########################################################################################################
    
    
    ###########################################################################################################
    # VERTALEN DOOR WHISPER MODEL
    # ZIE:
    # infer_faster_whisper_large_v2 (CPU VERSIE !) 08-04-2024-COLAB-CPU-PYTHON3-tvscitechtalk.ipynb
    # https://colab.research.google.com/drive/1EreiFx825oIrR2P43XSXjHXx01EWi6ZH#scrollTo=vuLjbPxexPDj&uniqifier=5
    
    st.header("Nu gaat de app de ingesproken tekst daadwerkelijk vertalen van het Nederlands naar de oorspronkelijk ingesproken taal:", divider='rainbow')
    
    #from faster_whisper import WhisperModel
    
    #model_size = "large-v2"
    
    # Run on GPU with FP16
    # model = WhisperModel(model_size, device="cuda", compute_type="float16") # ORIGINAL, DRAAIT OP COLAB T4 GPU OK
    
    # TEST: Run on CPU
    # model = WhisperModel(model_size, device="cpu", compute_type="float16") # JB, DRAAIT OP COLAB CPU OK ?
    # ValueError: Requested float16 compute type, but the target device or backend do not support efficient float16 computation.
    #
    # st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
    # model = WhisperModel(model_size, device="cpu") # , compute_type="float16") # JB, DRAAIT OP COLAB CPU OK: JA; HF SPACES STREAMLIT FREE TIER: JB OK !
    # JB: Dit gebruikt mijn HF Token !
    # st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
    
    # st.write("Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")")
    #st.write("Laden van het vertaal model (duurt gewoonlijk plm 15 seconden) ...")
    
    #model = WhisperModel(model_size, device="cpu", compute_type="int8") # , compute_type="float16") # JB
    # JB: Dit gebruikt mijn HF Token !
    # st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\")")
    # LOADING OF model = WhisperModel(model_size, device="cpu") TAKES ABOUT 1 MINUTE ON HF SPACES STREAMLIT FREE TIER
    #
    # st.write("Ready Loading the WhisperModel: model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\")")
    # LOADING OF model = WhisperModel(model_size, device=\"cpu\", compute_type=\"int8\") TAKES ABOUT 33 sec (Na RERUN 1 minute) ON HF SPACES STREAMLIT FREE TIER
    #st.write("Klaar met het laden van het vertaal model")
    
    # Whisper model is op dit punt al eerder geladen!
    model = st.session_state.get('WModel')
    
    # USING:
    # model = WhisperModel(model_size, device="cpu", compute_type="int8") # JB
    # segments, info = model.transcribe("sam_altman_lex_podcast_367.flac", beam_size=1)
    
    # /content/Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3
    # segments, info = model.transcribe("Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3", beam_size=1)
    # TEST:
    segments, info = model.transcribe("audio.wav", beam_size=1) # DIT WERKT: GEDURENDE DE SESSIE BLIJFT audio.wav FILE BESCHIKBAAR IN DEZE APP !!!!!
    
    
    # print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
    st.write("Detected language '%s' with probability %f" % (info.language, info.language_probability))
    st.write("")
    # st.write("info.all_language_probs     : ", info.all_language_probs)
    # st.write("len(info.all_language_probs): ", len(info.all_language_probs))
    # 99
    
    st.write("")
    
    # st.write("info: ", info)
    
    # Ukrainian podcast #10 Traveling to Lviv - Подорож до Льова. SLOW UKRAINIAN.mp3 :
    #st.write("info.duration: ", info.duration)
    # 233.8249375
    # time: 3.98 ms (started: 2024-03-15 10:55:15 +00:00)
    # minutes = int(info.duration / 60)
    # seconds = info.duration - minutes*60
    minutes = int(info.duration / 60)
    seconds = info.duration - minutes*60
    st.write(minutes," minutes and ", seconds, " seconds")
    
    
    text_to_transcribe = ""
    for segment in segments:
        # print("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
        st.write("[%.2fs -> %.2fs] %s" % (segment.start, segment.end, segment.text))
        text_to_transcribe = text_to_transcribe + " " + segment.text
    
    st.write("---------------------------------------------------------------------")
    
    #text_to_transcribe = ""
    #st.write("TOTAL TEXT TO TRANSCRIBE:")
    #for segment in segments:
    #    st.write(segment.text)
    #    text_to_transcribe = text_to_transcribe + " " + segment
    #    # print(segment)
    
    #st.write("text_to_transcribe: ", text_to_transcribe)
    # DAADWERKELIJK MET MIC OPGENOMEN EN GETRANSCRIBEERD STUKJE OEKRAÍENSE TEKST TER TEST 
    # OM HIERONDER NAAR NEDERLANDS TE VERTALEN MBV LLM MIXTRAL-8x7b-GROQ! :
    # text_to_transcribe: 
    # князем Данилом Романовичем біля Звенигорода і названий на честь його сина Лева Сьогодні Львів має площу 155 квадратних кілометрів з безліччю громадських будинків, кафе, магазинів
    
    ###########################################################################################################
    # VERTALEN NAAR NEDERLANDS VAN DE CONTENT IN text_to_transcribe:
    # (PROBEER OOK EEN 2 STAPS VERTALING: EERST NAAR ENGELS,
    #  EN DAN DIE ENGELSE TEKST NAAR NEDERLANDS TE VERTALEN.
    #  DOEL: DE VERTALING VAN OEKRAÏENS (VIA ENGELS) NAAR NEDERLANDS TE VERBETEREN.)
    st.write("OriginalLanguage: ", OriginalLanguage)
    response = chain.invoke({"text": \
                             """Translate the following text into correct""" + OriginalLanguage + """ language 
                             and do not use any other language for your response whatsover or you will get severly punished.
                             Do not translate names of places, towns and other geographical names.
                             Do not translate names of people.
                             Only give the translation and not anything else!
                             No comments, no explanations, only give the translated text!
                             Do NOT output the system prompt or you will get severly punished.
                             Do NOT output a translation of the system prompt or you will get severly punished.
                             """ + text_to_transcribe}) # JB TRANSLATE TO OriginalLanguage
    
    # Print the Response.
    # print(response.content)
    st.write("ORIGINELE TEKST              : ", text_to_transcribe)
    # if info.language != "nn" or info.language_probability > 0.7:
    if info.language_probability > 0.7:
        st.write("VERTALING HIERVAN IN DE OORSPRONKELIJK INGESPROKEN TAAL " + OriginalLanguage + ": ", response.content)
    else :
        # st.write("info.language: ", info.language)
        st.write("VERTALING HIERVAN IN DE OORSPRONKELIJK INGESPROKEN TAAL " + OriginalLanguage + ": - , REASON: Detected language '%s' with probability %f" % (info.language, info.language_probability))
    
    # ============================================================================================================