|
|
import einops |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
|
|
|
|
|
|
|
@torch.no_grad() |
|
|
def find_flat_region(mask): |
|
|
device = mask.device |
|
|
kernel_x = torch.Tensor([[-1, 0, 1], [-1, 0, 1], |
|
|
[-1, 0, 1]]).unsqueeze(0).unsqueeze(0).to(device) |
|
|
kernel_y = torch.Tensor([[-1, -1, -1], [0, 0, 0], |
|
|
[1, 1, 1]]).unsqueeze(0).unsqueeze(0).to(device) |
|
|
mask_ = F.pad(mask.unsqueeze(0), (1, 1, 1, 1), mode='replicate') |
|
|
|
|
|
grad_x = torch.nn.functional.conv2d(mask_, kernel_x) |
|
|
grad_y = torch.nn.functional.conv2d(mask_, kernel_y) |
|
|
return ((abs(grad_x) + abs(grad_y)) == 0).float()[0] |
|
|
|
|
|
|
|
|
def numpy2tensor(img): |
|
|
x0 = torch.from_numpy(img.copy()).float().to(device) / 255.0 * 2.0 - 1. |
|
|
x0 = torch.stack([x0], dim=0) |
|
|
return einops.rearrange(x0, 'b h w c -> b c h w').clone() |
|
|
|