Spaces:
Sleeping
Sleeping
| import torch | |
| import librosa | |
| from speechbrain.inference.classifiers import EncoderClassifier | |
| from pydub import AudioSegment | |
| import gradio as gr | |
| import os | |
| # Load model only once | |
| classifier = EncoderClassifier.from_hparams( | |
| source="Jzuluaga/accent-id-commonaccent_ecapa", | |
| savedir="pretrained_models/accent-id-commonaccent_ecapa" | |
| ) | |
| def classify_accent(video): | |
| # 'video' will already be a path to the uploaded file | |
| audio = AudioSegment.from_file(video, format="mp4") | |
| audio.export("output.wav", format="wav") | |
| waveform, sr = librosa.load("output.wav", sr=16000, mono=True) | |
| waveform_tensor = torch.tensor(waveform).unsqueeze(0) | |
| prediction = classifier.classify_batch(waveform_tensor) | |
| _, score, _, text_lab = prediction | |
| return f"Accent: {text_lab[0]} (Confidence: {score.item():.2f})" | |
| iface = gr.Interface(fn=classify_accent, | |
| inputs=gr.Video(), | |
| outputs="text") | |
| if __name__ == "__main__": | |
| iface.launch() |