accent_demo_id2 / app.py
JCrimson1's picture
Create app.py
40cd02e verified
raw
history blame
986 Bytes
import torch
import librosa
from speechbrain.inference.classifiers import EncoderClassifier
from pydub import AudioSegment
import gradio as gr
import os
# Load model only once
classifier = EncoderClassifier.from_hparams(
source="Jzuluaga/accent-id-commonaccent_ecapa",
savedir="pretrained_models/accent-id-commonaccent_ecapa"
)
def classify_accent(video):
# 'video' will already be a path to the uploaded file
audio = AudioSegment.from_file(video, format="mp4")
audio.export("output.wav", format="wav")
waveform, sr = librosa.load("output.wav", sr=16000, mono=True)
waveform_tensor = torch.tensor(waveform).unsqueeze(0)
prediction = classifier.classify_batch(waveform_tensor)
_, score, _, text_lab = prediction
return f"Accent: {text_lab[0]} (Confidence: {score.item():.2f})"
iface = gr.Interface(fn=classify_accent,
inputs=gr.Video(),
outputs="text")
if __name__ == "__main__":
iface.launch()