Spaces:
Running
Running
import os | |
from pathlib import Path | |
from dotenv import load_dotenv | |
load_dotenv() | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
QDRANT_API_KEY = os.getenv("QDRANT_API_KEY") | |
QDRANT_ENDPOINT = os.getenv("QDRANT_ENDPOINT") | |
# QDRANT_MOVIE_COLLECTION_NAME = os.getenv("QDRANT_MOVIE_COLLECTION_NAME_BGE") | |
# QDRANT_TV_COLLECTION_NAME = os.getenv("QDRANT_TV_COLLECTION_NAME_BGE") | |
QDRANT_MOVIE_COLLECTION_NAME = "Movies_BGE_June" | |
QDRANT_TV_COLLECTION_NAME = "TV_Shows_BGE_June" | |
SUPABASE_URL = os.getenv("SUPABASE_URL") | |
SUPABASE_API_KEY = os.getenv("SUPABASE_API_KEY") | |
NLTK_PATH = Path(__file__).resolve().parent.parent.parent / "data" / "nltk_data" | |
BM25_PATH = Path(__file__).resolve().parent.parent.parent / "data" / "bm25_files" | |
INTENT_MODEL = "JJTsao/intent-classifier-distilbert-movierec" # Fine-tuned intent classification model for query intent classifiation | |
EMBEDDING_MODEL = "JJTsao/fine-tuned_movie_retriever-bge-base-en-v1.5" # Fine-tuned sentence transfomer model for query dense vector embedding | |
OPENAI_MODEL = "gpt-4o-mini" # LLM for chat completions | |
if not OPENAI_API_KEY or not QDRANT_API_KEY: | |
raise ValueError("Missing API key(s).") | |
if ( | |
not QDRANT_ENDPOINT | |
or not QDRANT_MOVIE_COLLECTION_NAME | |
or not QDRANT_TV_COLLECTION_NAME | |
): | |
raise ValueError("Missing QDrant URL or collection name.") | |