Spaces:
Running
Running
Merge branch 'main' of https://huggingface.co/spaces/JJTsao/rag-movie-api
Browse files- Dockerfile +10 -7
- app/chatbot.py +80 -0
- app/llm_services.py +99 -0
- data/bm25_files/movie_bm25_model.joblib +2 -2
- data/bm25_files/movie_bm25_vocab.joblib +2 -2
- data/bm25_files/tv_bm25_model.joblib +2 -2
- data/bm25_files/tv_bm25_vocab.joblib +2 -2
Dockerfile
CHANGED
@@ -1,19 +1,22 @@
|
|
1 |
-
# Use
|
2 |
FROM python:3.10-slim
|
3 |
|
4 |
-
#
|
|
|
|
|
5 |
WORKDIR /app
|
6 |
|
7 |
-
#
|
|
|
|
|
|
|
|
|
|
|
8 |
COPY requirements.txt .
|
9 |
RUN pip install --no-cache-dir -r requirements.txt
|
10 |
|
11 |
-
# Copy all project files into the container
|
12 |
COPY . .
|
13 |
|
14 |
-
# Set environment to unbuffered (cleaner logs)
|
15 |
ENV PYTHONUNBUFFERED=1
|
16 |
|
17 |
-
# Run FastAPI app on port 7860 (required by HF Spaces)
|
18 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
19 |
-
|
|
|
1 |
+
# Use slim base image
|
2 |
FROM python:3.10-slim
|
3 |
|
4 |
+
# Create a dedicated cache directory and assign permissions
|
5 |
+
RUN mkdir -p /home/user/.cache && chmod -R 777 /home/user/.cache
|
6 |
+
|
7 |
WORKDIR /app
|
8 |
|
9 |
+
# Set cache env vars **before** installing anything
|
10 |
+
ENV HF_HOME=/home/user/.cache/huggingface \
|
11 |
+
TRANSFORMERS_CACHE=/home/user/.cache/huggingface \
|
12 |
+
SENTENCE_TRANSFORMERS_HOME=/home/user/.cache/huggingface
|
13 |
+
|
14 |
+
# Install dependencies
|
15 |
COPY requirements.txt .
|
16 |
RUN pip install --no-cache-dir -r requirements.txt
|
17 |
|
|
|
18 |
COPY . .
|
19 |
|
|
|
20 |
ENV PYTHONUNBUFFERED=1
|
21 |
|
|
|
22 |
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
app/chatbot.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import time
|
3 |
+
from concurrent.futures import ThreadPoolExecutor
|
4 |
+
|
5 |
+
from app.llm_services import call_chat_model_openai
|
6 |
+
|
7 |
+
|
8 |
+
def sanitize_markdown(md_text: str) -> str:
|
9 |
+
return re.sub(r'!\[.*?\]\(.*?\)', '', md_text)
|
10 |
+
|
11 |
+
|
12 |
+
def build_chat_fn(retriever, intent_classifier):
|
13 |
+
def chat(
|
14 |
+
question,
|
15 |
+
history,
|
16 |
+
media_type="movies",
|
17 |
+
genres=None,
|
18 |
+
providers=None,
|
19 |
+
year_range=None,
|
20 |
+
):
|
21 |
+
full_t0 = time.time()
|
22 |
+
|
23 |
+
with ThreadPoolExecutor() as executor:
|
24 |
+
# Classify user intent to determine if it is a recommendation ask
|
25 |
+
t0 = time.time()
|
26 |
+
intent_future = executor.submit(
|
27 |
+
lambda q: intent_classifier(q)[0]["label"] == "recommendation", question
|
28 |
+
)
|
29 |
+
print(f"\n🧠 executor.submit(classify_intent) took {time.time() - t0:.3f}s")
|
30 |
+
|
31 |
+
# Embed user query as dense vector asynchronously
|
32 |
+
t0 = time.time()
|
33 |
+
query_vector_future = executor.submit(retriever.embed_dense, question)
|
34 |
+
print(f"🧵 executor.submit(embed_text) took {time.time() - t0:.3f}s")
|
35 |
+
|
36 |
+
# Wait for results
|
37 |
+
t0 = time.time()
|
38 |
+
is_rec_intent = intent_future.result()
|
39 |
+
print(f"✅ classify_intent() result received in {time.time() - t0:.3f}s")
|
40 |
+
|
41 |
+
t0 = time.time()
|
42 |
+
dense_vector = query_vector_future.result()
|
43 |
+
print(f"📈 embed_text() result received in {time.time() - t0:.3f}s")
|
44 |
+
|
45 |
+
# Embed user query as sparse vector for hybrid retrieval
|
46 |
+
t0 = time.time()
|
47 |
+
sparse_vector = retriever.embed_sparse(question, media_type)
|
48 |
+
print(f"📈 embed_sparse() result received in {time.time() - t0:.3f}s")
|
49 |
+
|
50 |
+
if is_rec_intent:
|
51 |
+
yield "[[MODE:recommendation]]\n"
|
52 |
+
|
53 |
+
t0 = time.time()
|
54 |
+
retrieved_movies = retriever.retrieve_and_rerank(
|
55 |
+
dense_vector,
|
56 |
+
sparse_vector,
|
57 |
+
media_type.lower(),
|
58 |
+
genres,
|
59 |
+
providers,
|
60 |
+
year_range,
|
61 |
+
)
|
62 |
+
print(f"\n📚 retrieve_and_rerank() took {time.time() - t0:.3f}s")
|
63 |
+
|
64 |
+
context = retriever.format_context(retrieved_movies)
|
65 |
+
user_message = f"{question}\n\nContext:\nBased on the following retrieved {media_type.lower()}, suggest the best recommendations.\n\n{context}"
|
66 |
+
|
67 |
+
print(f"✨ Total chat() prep time before streaming: {time.time() - full_t0:.3f}s")
|
68 |
+
for chunk in call_chat_model_openai(history, user_message):
|
69 |
+
yield chunk
|
70 |
+
|
71 |
+
else:
|
72 |
+
yield "[[MODE:chat]]\n"
|
73 |
+
|
74 |
+
user_message = f"The user did not ask for a recommendation. Ask them to be more specific. Answer this as a general question: {question}"
|
75 |
+
|
76 |
+
print(f"✨ Total chat() prep time before streaming: {time.time() - full_t0:.3f}s")
|
77 |
+
for chunk in call_chat_model_openai(history, user_message):
|
78 |
+
yield sanitize_markdown(chunk)
|
79 |
+
|
80 |
+
return chat
|
app/llm_services.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from openai import OpenAI
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from app.config import EMBEDDING_MODEL, OPENAI_MODEL, OPENAI_API_KEY
|
7 |
+
|
8 |
+
# === LLM Config ===
|
9 |
+
_sentence_model = None # Not loaded at import time
|
10 |
+
|
11 |
+
# === Clients ===
|
12 |
+
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
13 |
+
|
14 |
+
# === System Prompt ===
|
15 |
+
SYSTEM_PROMPT = """
|
16 |
+
You are a professional film curator and critic. Your role is to analyze the user's preferences and recommend high-quality films or TV shows using only the provided list.
|
17 |
+
|
18 |
+
Focus on:
|
19 |
+
|
20 |
+
- Artistic merit and storytelling
|
21 |
+
- Genres, themes, tone, and emotional resonance
|
22 |
+
- IMDB and Rotten Tomatoes ratings
|
23 |
+
- Strong character-driven or thematically rich selections
|
24 |
+
|
25 |
+
### Response Format (in markdown):
|
26 |
+
|
27 |
+
1. Start with a concise 2 sentences **opening paragraph** that contextualizes the theme and the overall viewing experience the user is seeking. At the end of this paragraph, insert the token: <!-- END_INTRO -->.
|
28 |
+
|
29 |
+
2. Then, for each recommendation, use the following format (repeat for each title). At the end of each movie recommendation block, insert the token: <!-- END_MOVIE -->:
|
30 |
+
|
31 |
+
```
|
32 |
+
### <Number>. <Movie Title>
|
33 |
+
- POSTER_PATH: /abc123.jpg
|
34 |
+
- BACKDROP_PATH: /abc123.jpg
|
35 |
+
- GENRES: Genre1, Genre2, ...
|
36 |
+
- IMDB_RATING: X.X
|
37 |
+
- ROTTEN_TOMATOES_RATING: XX%
|
38 |
+
- TRAILER_KEY: abc123
|
39 |
+
- WHY_YOU_MIGHT_ENJOY_IT: <Short paragraph explaining the appeal based on character, themes, tone, and relevance to the user's intent.>
|
40 |
+
<!-- END_MOVIE -->
|
41 |
+
```
|
42 |
+
|
43 |
+
3. End with a brief **closing paragraph** that summarizes the emotional or intellectual throughline across the recommendations, and affirms their alignment with the user's preferences.
|
44 |
+
|
45 |
+
Write in **Markdown** only. Be concise, authoritative, and avoid overly generic statements. Each "Why You Might Enjoy It" should be specific and grounded in the movie’s themes, storytelling, or cultural relevance.
|
46 |
+
"""
|
47 |
+
|
48 |
+
|
49 |
+
def load_sentence_model():
|
50 |
+
global _sentence_model
|
51 |
+
if _sentence_model is None:
|
52 |
+
print("⏳ Loading embedding model...")
|
53 |
+
_sentence_model = SentenceTransformer(
|
54 |
+
EMBEDDING_MODEL, device="cuda" if torch.cuda.is_available() else "cpu"
|
55 |
+
)
|
56 |
+
|
57 |
+
print(f"🔥 Model '{EMBEDDING_MODEL}' loaded. Performing GPU warmup...")
|
58 |
+
|
59 |
+
# Realistic multi-sentence warmup to trigger full CUDA graph
|
60 |
+
warmup_sentences = [
|
61 |
+
"A suspenseful thriller with deep character development and moral ambiguity.",
|
62 |
+
"Coming-of-age story with emotional storytelling and strong ensemble performances.",
|
63 |
+
"Mind-bending sci-fi with philosophical undertones and high concept ideas.",
|
64 |
+
"Recommend me some comedies.",
|
65 |
+
]
|
66 |
+
_ = _sentence_model.encode(warmup_sentences, show_progress_bar=False)
|
67 |
+
time.sleep(0.5)
|
68 |
+
_ = _sentence_model.encode(warmup_sentences, show_progress_bar=False)
|
69 |
+
print("🚀 Embedding model fully warmed up.")
|
70 |
+
|
71 |
+
return _sentence_model
|
72 |
+
|
73 |
+
|
74 |
+
def embed_text(text: str) -> list[float]:
|
75 |
+
model = load_sentence_model()
|
76 |
+
return model.encode(text).tolist()
|
77 |
+
|
78 |
+
|
79 |
+
def build_chat_history(history: list, max_turns: int = 5) -> list:
|
80 |
+
return [
|
81 |
+
{"role": msg.role, "content": msg.content}
|
82 |
+
for msg in history[-max_turns * 2:]
|
83 |
+
]
|
84 |
+
|
85 |
+
|
86 |
+
|
87 |
+
def call_chat_model_openai(history, user_message: str):
|
88 |
+
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
89 |
+
messages += build_chat_history(history or [])
|
90 |
+
messages.append({"role": "user", "content": user_message})
|
91 |
+
|
92 |
+
response = openai_client.chat.completions.create(
|
93 |
+
model=OPENAI_MODEL, messages=messages, temperature=0.7, stream=True
|
94 |
+
)
|
95 |
+
|
96 |
+
for chunk in response:
|
97 |
+
delta = chunk.choices[0].delta.content
|
98 |
+
if delta:
|
99 |
+
yield delta
|
data/bm25_files/movie_bm25_model.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acf76920893471f0ee91cdc1c2fb20c42d8585f12dbc1dc10dcbeff2be720475
|
3 |
+
size 291
|
data/bm25_files/movie_bm25_vocab.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f721046d72d43dd9a6808f21e2dd04a174c7d67e89aad23f3696c5854fa3abc
|
3 |
+
size 289
|
data/bm25_files/tv_bm25_model.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:25a6ff1e336835bd87c6b53dc1732142193d5d75f28acafb6e94dd5db5718fc0
|
3 |
+
size 291
|
data/bm25_files/tv_bm25_vocab.joblib
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dee6416043ca93b626ee9816b992c22024138e8a6d707b1b1ee001b121a8268c
|
3 |
+
size 289
|