Spaces:
Runtime error
Runtime error
| import os | |
| import streamlit as st | |
| from dotenv import load_dotenv | |
| from PyPDF2 import PdfReader | |
| from langchain.text_splitter import RecursiveCharacterTextSplitter | |
| from langchain.document_loaders import UnstructuredPDFLoader | |
| from langchain.text_splitter import CharacterTextSplitter | |
| from langchain.embeddings import HuggingFaceEmbeddings | |
| from langchain.vectorstores import FAISS | |
| from langchain.chat_models import ChatOpenAI | |
| from langchain.memory import ConversationBufferMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from htmlTemplates import css, bot_template, user_template | |
| from langchain.llms import HuggingFaceHub | |
| from langchain.vectorstores import Chroma | |
| from gpt4all import GPT4All | |
| # set this key as an environment variable | |
| os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token'] | |
| def add_logo(): | |
| st.markdown( | |
| f""" | |
| <style> | |
| [data-testid="stSidebar"] {{ | |
| background-image: url(https://smbk.s3.amazonaws.com/media/organization_logos/111579646d1241f4be17bd7394dcb238.jpg); | |
| background-repeat: no-repeat; | |
| padding-top: 80px; | |
| background-position: 20px 20px; | |
| }} | |
| </style> | |
| """, | |
| unsafe_allow_html=True, | |
| ) | |
| def get_pdf_text(pdf_docs : list) -> str: | |
| text = "" | |
| for pdf in pdf_docs: | |
| pdf_reader = PdfReader(pdf) | |
| for page in pdf_reader.pages: | |
| text += page.extract_text() | |
| return text | |
| def get_pdf_pages(pdf_docs): | |
| """ | |
| Extract text from a list of PDF documents. | |
| Parameters | |
| ---------- | |
| pdf_docs : list | |
| List of PDF documents to extract text from. | |
| Returns | |
| ------- | |
| str | |
| Extracted text from all the PDF documents. | |
| """ | |
| pages = [] | |
| import tempfile | |
| with tempfile.TemporaryDirectory() as tmpdirname: | |
| for pdf in pdf_docs: | |
| pdf_path=os.path.join(tmpdirname,pdf.name) | |
| with open(pdf_path, "wb") as f: | |
| f.write(pdf.getbuffer()) | |
| pdf_loader = UnstructuredPDFLoader(pdf_path) | |
| pdf_pages = pdf_loader.load_and_split() | |
| pages=pages+pdf_pages | |
| return pages | |
| #def get_text_chunks(text:str) ->list: | |
| # text_splitter = CharacterTextSplitter( | |
| # separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len | |
| # ) | |
| # chunks = text_splitter.split_text(text) | |
| # return chunks | |
| def get_text_chunks(pages): | |
| """ | |
| Split the input text into chunks. | |
| Parameters | |
| ---------- | |
| text : str | |
| The input text to be split. | |
| Returns | |
| ------- | |
| list | |
| List of text chunks. | |
| """ | |
| text_splitter = RecursiveCharacterTextSplitter( | |
| chunk_size=1024, chunk_overlap=64 | |
| ) | |
| texts = text_splitter.split_documents(pages) | |
| print(str(len(texts))) | |
| return texts | |
| #def get_vectorstore(text_chunks : list) -> FAISS: | |
| # model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
| # encode_kwargs = { | |
| # "normalize_embeddings": True | |
| # } # set True to compute cosine similarity | |
| # embeddings = HuggingFaceBgeEmbeddings( | |
| # model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} | |
| # ) | |
| # vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
| # return vectorstore | |
| def get_vectorstore(text_chunks): | |
| """ | |
| Generate a vector store from a list of text chunks using HuggingFace BgeEmbeddings. | |
| Parameters | |
| ---------- | |
| text_chunks : list | |
| List of text chunks to be embedded. | |
| Returns | |
| ------- | |
| FAISS | |
| A FAISS vector store containing the embeddings of the text chunks. | |
| """ | |
| MODEL_NAME = "WhereIsAI/UAE-Large-V1" | |
| MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2" | |
| MODEL_NAME = "avsolatorio/GIST-Embedding-v0" | |
| hf_embeddings = HuggingFaceEmbeddings(model_name=MODEL_NAME) | |
| vectorstore = Chroma.from_documents(text_chunks, hf_embeddings, persist_directory="db") | |
| return vectorstore | |
| def get_conversation_chain(vectorstore:FAISS) -> ConversationalRetrievalChain: | |
| # llm = ChatOpenAI(temperature=0, model="gpt-3.5-turbo-0613") | |
| #llm = HuggingFaceHub( | |
| # repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| # #repo_id="clibrain/lince-mistral-7b-it-es", | |
| # #repo_id="TheBloke/Mixtral-8x7B-Instruct-v0.1-GGUF" | |
| # model_kwargs={"temperature": 0.5, "max_length": 2096},#1048 | |
| #) | |
| llm = HuggingFaceHub( | |
| repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| model_kwargs={"temperature": 0.5, "max_new_tokens": 1024, "max_length": 1048, "top_k": 3, "trust_remote_code": True, "torch_dtype": "auto"}, | |
| ) | |
| memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True) | |
| conversation_chain = ConversationalRetrievalChain.from_llm( | |
| llm=llm, retriever=vectorstore.as_retriever(), memory=memory | |
| ) | |
| return conversation_chain | |
| #def handle_userinput(user_question:str): | |
| # response = st.session_state.conversation({"pregunta": user_question}) | |
| # st.session_state.chat_history = response["chat_history"] | |
| # | |
| # for i, message in enumerate(st.session_state.chat_history): | |
| # if i % 2 == 0: | |
| # st.write(" Usuario: " + message.content) | |
| # else: | |
| # st.write("🤖 ChatBot: " + message.content) | |
| def handle_userinput(user_question): | |
| """ | |
| Handle user input and generate a response using the conversational retrieval chain. | |
| Parameters | |
| ---------- | |
| user_question : str | |
| The user's question. | |
| """ | |
| response = st.session_state.conversation({"question": user_question}) | |
| st.session_state.chat_history = response["chat_history"] | |
| for i, message in enumerate(st.session_state.chat_history): | |
| if i % 2 == 0: | |
| st.write("//_^ User: " + message.content) | |
| else: | |
| st.write("🤖 ChatBot: " + message.content) | |
| def main(): | |
| st.set_page_config( | |
| page_title="Chat with a Bot that tries to answer questions about multiple PDFs", | |
| page_icon=":books:", | |
| ) | |
| #st.markdown("# Charla con TedCasBot") | |
| #st.markdown("Este Bot será tu aliado a la hora de buscar información en múltiples documentos pdf. Déjanos ayudarte! 🙏🏾") | |
| st.markdown("# Chat with TedCasBot") | |
| st.markdown("This Bot is a powerful AI tool designed to simplify the process of extracting information from PDF documents") | |
| st.write(css, unsafe_allow_html=True) | |
| if "conversation" not in st.session_state: | |
| st.session_state.conversation = None | |
| if "chat_history" not in st.session_state: | |
| st.session_state.chat_history = None | |
| #st.header("Charla con un Bot 🤖🦾 que te ayudará a responder preguntas sobre tus pdfs:") | |
| st.header("Chat with the TedCasBot. He will help you with any doubt you may have with your documents:") | |
| user_question = st.text_input("Ask what you need!:") | |
| if user_question: | |
| handle_userinput(user_question) | |
| with st.sidebar: | |
| add_logo() | |
| st.subheader("Your documents") | |
| pdf_docs = st.file_uploader( | |
| "Upload your documents and ress 'Process'", accept_multiple_files=True | |
| ) | |
| if st.button("Process"): | |
| with st.spinner("Processing"): | |
| # get pdf text | |
| raw_text = get_pdf_text(pdf_docs) | |
| pages = get_pdf_pages(pdf_docs) | |
| # get the text chunks | |
| #text_chunks = get_text_chunks(raw_text) | |
| text_chunks = get_text_chunks(pages) | |
| # create vector store | |
| vectorstore = get_vectorstore(text_chunks) | |
| # create conversation chain | |
| st.session_state.conversation = get_conversation_chain(vectorstore) | |
| if __name__ == "__main__": | |
| main() | |