Delete chart.py
Browse files
chart.py
DELETED
@@ -1,75 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import yfinance as yf
|
3 |
-
import pandas as pd
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
import plotly.express as px
|
6 |
-
from datetime import datetime, timedelta
|
7 |
-
|
8 |
-
# Standardwerte für das Datum: heute und ein Jahr davor
|
9 |
-
default_end_date = datetime.today().date()
|
10 |
-
default_start_date = default_end_date - timedelta(days=365)
|
11 |
-
|
12 |
-
# Streamlit App Titel
|
13 |
-
st.title("📈 Interaktive Analyse von Aktienindizes")
|
14 |
-
|
15 |
-
# Benutzer kann das Datum anpassen, aber Standardwerte sind gesetzt
|
16 |
-
start_date = st.date_input("Startdatum", default_start_date)
|
17 |
-
end_date = st.date_input("Enddatum", default_end_date)
|
18 |
-
|
19 |
-
# Benutzer-Inputs für die beiden Ticker
|
20 |
-
ticker1 = st.text_input("Ticker 1", "^GSPC") # Standard: S&P 500
|
21 |
-
ticker2 = st.text_input("Ticker 2", "^NDX") # Standard: Nasdaq 100
|
22 |
-
|
23 |
-
# Button zum Laden der Daten
|
24 |
-
if st.button("Daten abrufen & Diagramme anzeigen"):
|
25 |
-
|
26 |
-
# Daten abrufen
|
27 |
-
indices = {ticker1: ticker1, ticker2: ticker2}
|
28 |
-
data = {}
|
29 |
-
|
30 |
-
for name, symbol in indices.items():
|
31 |
-
ticker = yf.Ticker(symbol)
|
32 |
-
df = ticker.history(start=start_date, end=end_date)
|
33 |
-
data[name] = df["Close"]
|
34 |
-
|
35 |
-
# In DataFrame umwandeln
|
36 |
-
df_indices = pd.DataFrame(data)
|
37 |
-
|
38 |
-
# Falls keine Daten geladen wurden, abbrechen
|
39 |
-
if df_indices.empty:
|
40 |
-
st.error("❌ Keine Daten für die angegebenen Ticker gefunden!")
|
41 |
-
else:
|
42 |
-
# --------- 1. INTERAKTIVER CHART: Vergleich mit zwei Achsen ---------
|
43 |
-
fig1 = go.Figure()
|
44 |
-
|
45 |
-
# Linke Achse (Ticker 1)
|
46 |
-
fig1.add_trace(go.Scatter(x=df_indices.index, y=df_indices[ticker1], mode='lines',
|
47 |
-
name=ticker1, yaxis='y1'))
|
48 |
-
|
49 |
-
# Rechte Achse (Ticker 2)
|
50 |
-
fig1.add_trace(go.Scatter(x=df_indices.index, y=df_indices[ticker2], mode='lines',
|
51 |
-
name=ticker2, yaxis='y2'))
|
52 |
-
|
53 |
-
# Layout mit zwei Achsen definieren
|
54 |
-
fig1.update_layout(
|
55 |
-
title=f"Vergleich der Close-Preise: {ticker1} vs. {ticker2}",
|
56 |
-
xaxis=dict(title="Datum"),
|
57 |
-
yaxis=dict(title=f"{ticker1} Preis (USD)", side='left', showgrid=False),
|
58 |
-
yaxis2=dict(title=f"{ticker2} Preis (USD)", side='right', overlaying='y', showgrid=False),
|
59 |
-
legend=dict(x=0, y=1),
|
60 |
-
hovermode="x"
|
61 |
-
)
|
62 |
-
|
63 |
-
# Streamlit: Interaktives Chart anzeigen
|
64 |
-
st.plotly_chart(fig1, use_container_width=True)
|
65 |
-
|
66 |
-
# --------- 2. INTERAKTIVER CHART: Normierter Vergleich ---------
|
67 |
-
df_normalized = df_indices / df_indices.iloc[0] * 100
|
68 |
-
|
69 |
-
fig2 = px.line(df_normalized, x=df_normalized.index, y=df_normalized.columns,
|
70 |
-
title=f"Normierter Vergleich der Close-Preise: {ticker1} vs. {ticker2}",
|
71 |
-
labels={"value": "Index (Startwert = 100)", "variable": "Index"},
|
72 |
-
template="plotly_white")
|
73 |
-
|
74 |
-
# Streamlit: Interaktives Chart anzeigen
|
75 |
-
st.plotly_chart(fig2, use_container_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|