Heng666 commited on
Commit
0976f5a
·
verified ·
1 Parent(s): bd1c960

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +110 -0
  2. requirements.txt +6 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from huggingface_hub import hf_hub_download
3
+ import gradio as gr
4
+ import json
5
+ import pandas as pd
6
+ import collections
7
+ import scipy.signal
8
+ import numpy as np
9
+ from functools import partial
10
+ from openwakeword.model import Model
11
+
12
+ from openwakeword.utils import download_models
13
+ download_models()
14
+
15
+ # 用 Secret token 從 HF Model Hub 下載私有模型
16
+ hf_token = os.environ.get("HF_TOKEN")
17
+ model_path = hf_hub_download(
18
+ repo_id="JTBTechnology/kmu_wakeword",
19
+ filename="hi_kmu_0721.onnx", # 改成你模型內的正確檔名
20
+ token=hf_token,
21
+ repo_type="model"
22
+ )
23
+
24
+ # 直接用下載的模型路徑載入
25
+ model = Model(wakeword_models=[model_path], inference_framework="onnx")
26
+
27
+ # Define function to process audio
28
+ # def process_audio(audio, state=collections.defaultdict(partial(collections.deque, maxlen=60))):
29
+ def process_audio(audio, state=None):
30
+ if state is None:
31
+ state = collections.defaultdict(partial(collections.deque, maxlen=60))
32
+ # Resample audio to 16khz if needed
33
+ if audio[0] != 16000:
34
+ data = scipy.signal.resample(audio[1], int(float(audio[1].shape[0])/audio[0]*16000))
35
+
36
+ # Get predictions
37
+ for i in range(0, data.shape[0], 1280):
38
+ if len(data.shape) == 2 or data.shape[-1] == 2:
39
+ chunk = data[i:i+1280][:, 0] # just get one channel of audio
40
+ else:
41
+ chunk = data[i:i+1280]
42
+
43
+ if chunk.shape[0] == 1280:
44
+ prediction = model.predict(chunk)
45
+ for key in prediction:
46
+ #Fill deque with zeros if it's empty
47
+ if len(state[key]) == 0:
48
+ state[key].extend(np.zeros(60))
49
+
50
+ # Add prediction
51
+ state[key].append(prediction[key])
52
+
53
+ # Make line plot
54
+ dfs = []
55
+ for key in state.keys():
56
+ df = pd.DataFrame({"x": np.arange(len(state[key])), "y": state[key], "Model": key})
57
+ dfs.append(df)
58
+
59
+ df = pd.concat(dfs)
60
+
61
+ plot = gr.LinePlot(
62
+ value=df,
63
+ x='x',
64
+ y='y',
65
+ color="Model",
66
+ y_lim=(0,1),
67
+ tooltip="Model",
68
+ width=600,
69
+ height=300,
70
+ x_title="Time (frames)",
71
+ y_title="Model Score",
72
+ color_legend_position="bottom"
73
+ )
74
+ # 1. 將 state 轉成可 JSON 序列化格式(dict of lists)
75
+ serializable_state = {k: [float(x) for x in v] for k, v in state.items()}
76
+
77
+ # 2. 回傳 serializable_state 給 Gradio
78
+ return plot, serializable_state
79
+
80
+ # Create Gradio interface and launch
81
+
82
+ desc = """
83
+ 這是 [openWakeWord](https://github.com/dscripka/openWakeWord) 最新版本預設模型的小工具示範。
84
+ 請點一下下面的「開始錄音」按鈕,就能直接用麥克風測試。
85
+ 系統會即時把每個模型的分數用折線圖秀出來,你也可以把滑鼠移到線上看是哪一個模型。
86
+
87
+ 每一個模型都有自己專屬的喚醒詞或指令句(更多可以參考 [模型說明](https://github.com/dscripka/openWakeWord/tree/main/docs/models))。
88
+ 如果偵測到你講了對的關鍵詞,圖上對應模型的分數會突然變高。你可以試著講下面的範例語句試試看:
89
+
90
+ | 模型名稱 | 建議語句 |
91
+ | ------------- | ------ |
92
+ | hi\_kmu\_0721 | 「嗨,高醫」 |
93
+ """
94
+
95
+ gr_int = gr.Interface(
96
+ title = "語音喚醒展示",
97
+ description = desc,
98
+ css = ".flex {flex-direction: column} .gr-panel {width: 100%}",
99
+ fn=process_audio,
100
+ inputs=[
101
+ gr.Audio(sources=["microphone"], type="numpy", streaming=True, show_label=False),
102
+ "state"
103
+ ],
104
+ outputs=[
105
+ gr.LinePlot(show_label=False),
106
+ "state"
107
+ ],
108
+ live=True)
109
+
110
+ gr_int.launch()
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ gradio
2
+ pandas
3
+ numpy
4
+ scipy
5
+ huggingface_hub
6
+ openwakeword