Spaces:
Build error
Build error
File size: 3,610 Bytes
9390c83 aefa600 9977408 9390c83 531a00a 71f80a1 9390c83 2d47d11 5d01521 09f390b aefa600 a42f62d 2d47d11 a42f62d 2d47d11 5d01521 9390c83 2d47d11 9390c83 09f390b 9390c83 09f390b 9390c83 09f390b 9390c83 2d47d11 5d01521 9390c83 09f390b 71f80a1 9390c83 09f390b 9390c83 09f390b 5d01521 9390c83 2d47d11 5d01521 aefa600 2d47d11 a42f62d 5d01521 71f80a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
from urllib.parse import quote
import re
import os
import openai
from gradio_client import Client
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
chapter_num = 1
story_intro = ""
current_story = ""
current_image_url = ""
def generate_image_url(keywords):
return f"https://image.pollinations.ai/prompt/{quote(keywords)}"
def next_chapter(audience, keyword, protagonist):
global chapter_num, current_story, current_image_url
current_image_url = generate_image_url(current_story) # 다음 장의 이미지 URL을 생성합니다.
gr.Info(f'Chapter {chapter_num}를 생성하고 있습니다...')
chapter_prompt = f"{story_intro}\n\nKeyword: {keyword}\nProtagonist: {protagonist}\n\n\n\nChapter {chapter_num} 내용을 만들어줘."
chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo-16k", messages=[{"role": "user", "content": chapter_prompt}])
current_story = chat_completion.choices[0].message.content
chapter_num += 1
return current_story, current_image_url
def infer(image_input, audience, keyword, protagonist):
global story_intro, current_story, current_image_url, chapter_num
chapter_num = 1
gr.Info('Calling CLIP Interrogator, 이미지를 해석하고 있습니다...')
clipi_result = clipi_client.predict(image_input, "best", 4, api_name="/clipi2")[0]
story_intro = f"""
# Illustrated Tales
## Created by [Sigkawat Pengnoo](https://flowgpt.com/prompt/qzv2D3OvHkzkfSE4rQCqv) at FlowGPT
Keyword: {keyword}
Protagonist: {protagonist}
한국어로 답변해줘.
STORY : "{{ {clipi_result} }}"
Let's begin with Chapter 1!
"""
current_story = clipi_result
return next_chapter()
css = """
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center">Illustrated Tales - Korean</h1>
<p style="text-align: center">이미지를 업로드하세요, ChatGPT를 통해 한국어로 이야기와 그림을 만들어 줍니다!</p>
"""
)
with gr.Row():
with gr.Column():
image_in = gr.Image(label="이미지 입력", type="filepath", elem_id="image-in", height=420)
audience = gr.Radio(label="대상", choices=["Children", "Adult"], value="Children")
keyword_in = gr.Textbox(label="핵심 키워드")
protagonist_in = gr.Textbox(label="주인공")
submit_btn = gr.Button('이야기와 그림을 만들어 주세요')
next_chapter_btn = gr.Button('다음 이야기')
with gr.Column():
chapter_story = gr.Markdown(label="이야기", elem_id="chapter_story")
chapter_image = gr.Image(label="그림", elem_id="chapter_image")
submit_btn.click(fn=infer, inputs=[image_in, audience, keyword_in, protagonist_in],
outputs=[chapter_story, chapter_image])
next_chapter_btn.click(fn=lambda: next_chapter(audience=audience.value, keyword=keyword_in.value, protagonist=protagonist_in.value),
outputs=[chapter_story, chapter_image])
# next_chapter_btn.click(fn=next_chapter,
# outputs=[chapter_story, chapter_image])
demo.queue(max_size=12).launch()
|