JUNGU's picture
Update app.py
84fc905
raw
history blame
3.95 kB
import gradio as gr
from urllib.parse import quote
import re
import os
import openai
from gradio_client import Client
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
chapter_num = 1
story_intro = ""
current_story = ""
current_image_url = ""
chapters = []
def generate_image_url(keywords):
truncated_keywords = keywords[:20]
return f"https://image.pollinations.ai/prompt/{quote(truncated_keywords)}"
def next_chapter(audience, keyword, protagonist):
global chapter_num, current_story, current_image_url
current_image_url = generate_image_url(current_story)
gr.Info(f'Chapter {chapter_num}를 생성하고 있습니다...')
chapter_prompt = f"{story_intro}\n\nKeyword: {keyword}\nProtagonist: {protagonist}\n\n![Chapter {chapter_num} Image]({current_image_url})\n\nChapter {chapter_num} 내용을 만들어줘."
chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo-16k", messages=[{"role": "user", "content": chapter_prompt}])
current_story = chat_completion.choices[0].message.content
chapters.append({"story": current_story, "image": current_image_url})
chapter_num += 1
chapter_table = "| 챕터 | 이야기 | 그림 |\n|------|--------|------|\n" + "\n".join([f"| {i+1} | {c['story']} | ![image]({c['image']}) |" for i, c in enumerate(chapters)])
return current_story, current_image_url, chapter_table
def infer(image_input, audience, keyword, protagonist):
global story_intro, current_story, current_image_url, chapter_num, chapters
chapter_num = 1
chapters = []
gr.Info('Calling CLIP Interrogator, 이미지를 해석하고 있습니다...')
clipi_result = clipi_client.predict(image_input, "best", 4, api_name="/clipi2")[0]
story_intro = f"""
# Illustrated Tales
## Created by [Sigkawat Pengnoo](https://flowgpt.com/prompt/qzv2D3OvHkzkfSE4rQCqv) at FlowGPT
Keyword: {keyword}
Protagonist: {protagonist}
한국어로 답변해줘.
STORY : "{{ {clipi_result} }}"
Let's begin with Chapter 1!
"""
current_story = clipi_result
return next_chapter(audience, keyword, protagonist)
css = """
#col-container {max-width: 910px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(
"""
<h1 style="text-align: center">Illustrated Tales - Korean</h1>
<p style="text-align: center">이미지를 업로드하세요, ChatGPT를 통해 한국어로 이야기와 그림을 만들어 줍니다!</p>
"""
)
with gr.Row():
with gr.Column():
image_in = gr.Image(label="이미지 입력", type="filepath", elem_id="image-in", height=420)
audience = gr.Radio(label="대상", choices=["Children", "Adult"], value="Children")
keyword_in = gr.Textbox(label="핵심 키워드")
protagonist_in = gr.Textbox(label="주인공")
submit_btn = gr.Button('이야기와 그림을 만들어 주세요')
next_chapter_btn = gr.Button('다음 이야기')
with gr.Column():
chapter_story = gr.Markdown(label="이야기", elem_id="chapter_story")
chapter_image = gr.Image(label="그림", elem_id="chapter_image")
chapter_table_md = gr.Markdown(label="모든 챕터")
submit_btn.click(fn=infer, inputs=[image_in, audience, keyword_in, protagonist_in],
outputs=[chapter_story, chapter_image, chapter_table_md])
next_chapter_btn.click(fn=lambda: next_chapter(audience=audience.value, keyword=keyword_in.value, protagonist=protagonist_in.value),
outputs=[chapter_story, chapter_image, chapter_table_md])
demo.queue(max_size=12).launch()