Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import re
|
|
4 |
import os
|
5 |
import openai
|
6 |
from gradio_client import Client
|
|
|
7 |
|
8 |
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
|
9 |
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
|
@@ -12,22 +13,40 @@ chapter_num = 1
|
|
12 |
story_intro = ""
|
13 |
current_story = ""
|
14 |
current_image_url = ""
|
|
|
15 |
|
16 |
def generate_image_url(keywords):
|
17 |
truncated_keywords = keywords[:20]
|
18 |
return f"https://image.pollinations.ai/prompt/{quote(truncated_keywords)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
def next_chapter(audience, keyword, protagonist):
|
20 |
global chapter_num, current_story, current_image_url
|
21 |
-
current_image_url = generate_image_url(current_story)
|
22 |
gr.Info(f'Chapter {chapter_num}를 생성하고 있습니다...')
|
23 |
chapter_prompt = f"{story_intro}\n\nKeyword: {keyword}\nProtagonist: {protagonist}\n\n\n\nChapter {chapter_num} 내용을 만들어줘."
|
24 |
chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo-16k", messages=[{"role": "user", "content": chapter_prompt}])
|
25 |
current_story = chat_completion.choices[0].message.content
|
|
|
26 |
chapter_num += 1
|
27 |
-
|
|
|
28 |
|
29 |
def infer(image_input, audience, keyword, protagonist):
|
30 |
global story_intro, current_story, current_image_url, chapter_num
|
|
|
31 |
chapter_num = 1
|
32 |
gr.Info('Calling CLIP Interrogator, 이미지를 해석하고 있습니다...')
|
33 |
clipi_result = clipi_client.predict(image_input, "best", 4, api_name="/clipi2")[0]
|
@@ -66,15 +85,16 @@ with gr.Blocks(css=css) as demo:
|
|
66 |
protagonist_in = gr.Textbox(label="주인공")
|
67 |
submit_btn = gr.Button('이야기와 그림을 만들어 주세요')
|
68 |
next_chapter_btn = gr.Button('다음 이야기')
|
|
|
69 |
with gr.Column():
|
70 |
chapter_story = gr.Markdown(label="이야기", elem_id="chapter_story")
|
71 |
chapter_image = gr.Image(label="그림", elem_id="chapter_image")
|
|
|
72 |
|
73 |
submit_btn.click(fn=infer, inputs=[image_in, audience, keyword_in, protagonist_in],
|
74 |
-
outputs=[chapter_story, chapter_image])
|
75 |
next_chapter_btn.click(fn=lambda: next_chapter(audience=audience.value, keyword=keyword_in.value, protagonist=protagonist_in.value),
|
76 |
-
|
77 |
-
|
78 |
-
# outputs=[chapter_story, chapter_image])
|
79 |
|
80 |
demo.queue(max_size=12).launch()
|
|
|
4 |
import os
|
5 |
import openai
|
6 |
from gradio_client import Client
|
7 |
+
from fpdf import FPDF
|
8 |
|
9 |
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
|
10 |
clipi_client = Client("https://fffiloni-clip-interrogator-2.hf.space/")
|
|
|
13 |
story_intro = ""
|
14 |
current_story = ""
|
15 |
current_image_url = ""
|
16 |
+
chapters = [] # 챕터별 이야기와 그림 저장
|
17 |
|
18 |
def generate_image_url(keywords):
|
19 |
truncated_keywords = keywords[:20]
|
20 |
return f"https://image.pollinations.ai/prompt/{quote(truncated_keywords)}"
|
21 |
+
|
22 |
+
def save_as_pdf():
|
23 |
+
pdf = FPDF()
|
24 |
+
pdf.set_auto_page_break(auto=True, margin=15)
|
25 |
+
pdf.add_page()
|
26 |
+
|
27 |
+
for chapter in chapters:
|
28 |
+
pdf.set_font("Arial", size=12)
|
29 |
+
pdf.multi_cell(0, 10, chapter['story'])
|
30 |
+
pdf.image(chapter['image'], x=10, y=None, w=90)
|
31 |
+
|
32 |
+
pdf.output("illustrated_tales.pdf")
|
33 |
+
return "PDF 저장 완료!"
|
34 |
+
|
35 |
def next_chapter(audience, keyword, protagonist):
|
36 |
global chapter_num, current_story, current_image_url
|
37 |
+
current_image_url = generate_image_url(current_story)
|
38 |
gr.Info(f'Chapter {chapter_num}를 생성하고 있습니다...')
|
39 |
chapter_prompt = f"{story_intro}\n\nKeyword: {keyword}\nProtagonist: {protagonist}\n\n\n\nChapter {chapter_num} 내용을 만들어줘."
|
40 |
chat_completion = openai.ChatCompletion.create(model="gpt-3.5-turbo-16k", messages=[{"role": "user", "content": chapter_prompt}])
|
41 |
current_story = chat_completion.choices[0].message.content
|
42 |
+
chapters.append({"story": current_story, "image": current_image_url}) # 챕터 정보 저장
|
43 |
chapter_num += 1
|
44 |
+
chapter_table = [[c['story'], c['image']] for c in chapters]
|
45 |
+
return current_story, current_image_url, chapter_table
|
46 |
|
47 |
def infer(image_input, audience, keyword, protagonist):
|
48 |
global story_intro, current_story, current_image_url, chapter_num
|
49 |
+
chapters.clear() # 새로운 이야기 시작 시 초기화
|
50 |
chapter_num = 1
|
51 |
gr.Info('Calling CLIP Interrogator, 이미지를 해석하고 있습니다...')
|
52 |
clipi_result = clipi_client.predict(image_input, "best", 4, api_name="/clipi2")[0]
|
|
|
85 |
protagonist_in = gr.Textbox(label="주인공")
|
86 |
submit_btn = gr.Button('이야기와 그림을 만들어 주세요')
|
87 |
next_chapter_btn = gr.Button('다음 이야기')
|
88 |
+
save_pdf_btn = gr.Button('PDF로 저장하기')
|
89 |
with gr.Column():
|
90 |
chapter_story = gr.Markdown(label="이야기", elem_id="chapter_story")
|
91 |
chapter_image = gr.Image(label="그림", elem_id="chapter_image")
|
92 |
+
chapter_table = gr.Table(label="모든 챕터")
|
93 |
|
94 |
submit_btn.click(fn=infer, inputs=[image_in, audience, keyword_in, protagonist_in],
|
95 |
+
outputs=[chapter_story, chapter_image, chapter_table])
|
96 |
next_chapter_btn.click(fn=lambda: next_chapter(audience=audience.value, keyword=keyword_in.value, protagonist=protagonist_in.value),
|
97 |
+
outputs=[chapter_story, chapter_image, chapter_table])
|
98 |
+
save_pdf_btn.click(fn=save_as_pdf, outputs="text")
|
|
|
99 |
|
100 |
demo.queue(max_size=12).launch()
|