charting / app.py
JUNGU's picture
Update app.py
5449034
raw
history blame
1.61 kB
import streamlit as st
import pandas as pd
import matplotlib.pyplot as plt
# ํŒŒ์ผ ์—…๋กœ๋“œ
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
# ๋ฐ์ดํ„ฐ ํƒ€์ž„ ํ”„๋ ˆ์ž„ ์„ ํƒ
time_frame_options = ["1์ดˆ", "5์ดˆ", "10์ดˆ", "30์ดˆ", "1๋ถ„", "5๋ถ„", "10๋ถ„", "30๋ถ„", "60๋ถ„"]
time_frame = st.selectbox("๋ฐ์ดํ„ฐ ํƒ€์ž„ ํ”„๋ ˆ์ž„ ์„ ํƒ:", time_frame_options)
time_frame_map = {"1์ดˆ": 1/60, "5์ดˆ": 5/60, "10์ดˆ": 10/60, "30์ดˆ": 30/60, "1๋ถ„": 1, "5๋ถ„": 5, "10๋ถ„": 10, "30๋ถ„": 30, "60๋ถ„": 60}
time_frame_minutes = time_frame_map[time_frame]
if uploaded_file:
# CSV ํŒŒ์ผ ์ฝ๊ธฐ
df = pd.read_csv(uploaded_file)
# timestamp๋ฅผ datetime ํ˜•ํƒœ๋กœ ๋ณ€ํ™˜
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
# ์„ ํƒ๋œ ํƒ€์ž„ ํ”„๋ ˆ์ž„์œผ๋กœ ๋ฆฌ์ƒ˜ํ”Œ๋ง
df_resampled = df.resample(f'{time_frame_minutes}T', on='timestamp').mean()
# RGB ๊ทธ๋ž˜ํ”„
fig_rgb, ax_rgb = plt.subplots(figsize=(15, 5))
ax_rgb.plot(df_resampled['R'], label='R')
ax_rgb.plot(df_resampled['G'], label='G')
ax_rgb.plot(df_resampled['B'], label='B')
ax_rgb.set_title('RGB Color Variation')
ax_rgb.set_xlabel('Time')
ax_rgb.set_ylabel('Value')
ax_rgb.legend()
st.pyplot(fig_rgb)
# HSV ๊ทธ๋ž˜ํ”„
fig_hsv, ax_hsv = plt.subplots(figsize=(15, 5))
ax_hsv.plot(df_resampled['H'], label='H')
ax_hsv.plot(df_resampled['S'], label='S')
ax_hsv.plot(df_resampled['V'], label='V')
ax_hsv.set_title('HSV Color Variation')
ax_hsv.set_xlabel('Time')
ax_hsv.set_ylabel('Value')
ax_hsv.legend()
st.pyplot(fig_hsv)