JUNGU commited on
Commit
07cdbf6
·
1 Parent(s): caa7567

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py CHANGED
@@ -239,3 +239,43 @@ elif regression_type == "Random Forest Regression":
239
  axes[1].set_title('HSV Values')
240
 
241
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
239
  axes[1].set_title('HSV Values')
240
 
241
 
242
+
243
+ if uploaded_file is not None:
244
+ # CSV 파일 읽기
245
+ data = pd.read_csv(uploaded_file)
246
+ st.write("Data Preview:")
247
+ st.write(data.head())
248
+
249
+ # 데이터 시각화 (RGB & HSV)
250
+ fig, axes = plt.subplots(2, 1, figsize=(10, 8))
251
+
252
+ # RGB 차트
253
+ axes[0].plot(data['R'], 'r', label='R')
254
+ axes[0].plot(data['G'], 'g', label='G')
255
+ axes[0].plot(data['B'], 'b', label='B')
256
+ axes[0].legend(loc='upper right')
257
+ axes[0].set_title('RGB Values')
258
+
259
+ # HSV 차트
260
+ axes[1].plot(data['H'], 'r', label='H')
261
+ axes[1].plot(data['S'], 'g', label='S')
262
+ axes[1].plot(data['V'], 'b', label='V')
263
+ axes[1].legend(loc='upper right')
264
+ axes[1].set_title('HSV Values')
265
+
266
+ st.pyplot(fig)
267
+
268
+ X = np.arange(len(data)).reshape(-1, 1)
269
+
270
+ # Linear Regression
271
+ if regression_type == "Linear Regression":
272
+ model = LinearRegression()
273
+ model.fit(X, data['R'])
274
+ axes[0].plot(X, model.predict(X), 'r--')
275
+ model.fit(X, data['G'])
276
+ axes[0].plot(X, model.predict(X), 'g--')
277
+ model.fit(X, data['B'])
278
+ axes[0].plot(X, model.predict(X), 'b--')
279
+ st.write(f"Linear equation: y = {model.coef_[0]} * x + {model.intercept_}")
280
+
281
+ # Other regression types...