Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,68 @@
|
|
1 |
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
import numpy as np
|
6 |
from sklearn.linear_model import LinearRegression
|
7 |
from sklearn.preprocessing import PolynomialFeatures
|
8 |
-
|
9 |
-
from sklearn.svm import SVR
|
10 |
-
from sklearn.ensemble import RandomForestRegressor
|
11 |
-
|
12 |
-
st.title("Webcam Color Detection Charting")
|
13 |
-
|
14 |
-
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
15 |
-
|
16 |
-
time_frame_options = [
|
17 |
-
"All",
|
18 |
-
"1 second",
|
19 |
-
"5 seconds",
|
20 |
-
"10 seconds",
|
21 |
-
"30 seconds",
|
22 |
-
"1 minute",
|
23 |
-
"5 minutes",
|
24 |
-
"10 minutes",
|
25 |
-
"30 minutes",
|
26 |
-
"60 minutes",
|
27 |
-
]
|
28 |
-
time_frame = st.selectbox("Data Time Frame", time_frame_options)
|
29 |
-
|
30 |
-
regression_options = [
|
31 |
-
"None",
|
32 |
-
"Linear Regression",
|
33 |
-
"Polynomial Regression",
|
34 |
-
"SVR (Support Vector Regression)",
|
35 |
-
"Random Forest Regression",
|
36 |
-
]
|
37 |
-
regression_type = st.selectbox("Regression Analysis Type", regression_options)
|
38 |
-
|
39 |
-
if uploaded_file is not None:
|
40 |
-
# Read CSV file
|
41 |
-
data = pd.read_csv(uploaded_file)
|
42 |
-
|
43 |
-
# Filter data according to the time frame
|
44 |
-
if time_frame != "All":
|
45 |
-
seconds = {
|
46 |
-
"1 second": 1,
|
47 |
-
"5 seconds": 5,
|
48 |
-
"10 seconds": 10,
|
49 |
-
"30 seconds": 30,
|
50 |
-
"1 minute": 60,
|
51 |
-
"5 minutes": 300,
|
52 |
-
"10 minutes": 600,
|
53 |
-
"30 minutes": 1800,
|
54 |
-
"60 minutes": 3600,
|
55 |
-
}
|
56 |
-
data['timestamp'] = pd.to_datetime(data['timestamp'], unit='ms')
|
57 |
-
data.set_index('timestamp', inplace=True)
|
58 |
-
data = data.resample(f"{seconds[time_frame]}S").mean().dropna().reset_index()
|
59 |
-
|
60 |
-
# Create charts
|
61 |
-
fig, axes = plt.subplots(2, 1, figsize=(10, 8))
|
62 |
-
|
63 |
-
# RGB chart
|
64 |
-
axes[0].plot(data['R'], 'r', label='R')
|
65 |
-
axes[0].plot(data['G'], 'g', label='G')
|
66 |
-
axes[0].plot(data['B'], 'b', label='B')
|
67 |
-
|
68 |
-
# HSV chart
|
69 |
-
axes[1].plot(data['H'], 'r', label='H')
|
70 |
-
axes[1].plot(data['S'], 'g', label='S')
|
71 |
-
axes[1].plot(data['V'], 'b', label='V')
|
72 |
-
|
73 |
-
axes[0].legend(loc='upper right')
|
74 |
-
axes[0].set_title('RGB Values')
|
75 |
-
axes[1].legend(loc='upper right')
|
76 |
-
axes[1].set_title('HSV Values')
|
77 |
-
|
78 |
-
# Perform regression analysis if selected
|
79 |
-
if regression_type != "None":
|
80 |
-
X = np.arange(len(data)).reshape(-1, 1)
|
81 |
-
|
82 |
-
# Linear Regression
|
83 |
-
if regression_type == "Linear Regression":
|
84 |
-
model = LinearRegression()
|
85 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
86 |
-
model.fit(X, data[color])
|
87 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
88 |
-
st.write(f"{color}: y = {model.coef_[0]} * x + {model.intercept_}")
|
89 |
-
|
90 |
-
# Polynomial Regression
|
91 |
-
elif regression_type == "Polynomial Regression":
|
92 |
-
polynomial_features = PolynomialFeatures(degree=2)
|
93 |
-
model = make_pipeline(polynomial_features, LinearRegression())
|
94 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
95 |
-
model.fit(X, data[color])
|
96 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
97 |
-
st.write("Polynomial regression equation is not easily representable.")
|
98 |
-
|
99 |
-
# SVR (Support Vector Regression)
|
100 |
-
elif regression_type == "SVR (Support Vector Regression)":
|
101 |
-
model = SVR()
|
102 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
103 |
-
model.fit(X, data[color])
|
104 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
105 |
-
st.write("SVR equation is not easily representable.")
|
106 |
-
|
107 |
-
# Random Forest Regression
|
108 |
-
elif regression_type == "Random Forest Regression":
|
109 |
-
model = RandomForestRegressor()
|
110 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
111 |
-
model.fit(X, data[color])
|
112 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
113 |
-
st.write("Random Forest equation is not easily representable.")
|
114 |
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
|
|
4 |
import numpy as np
|
5 |
from sklearn.linear_model import LinearRegression
|
6 |
from sklearn.preprocessing import PolynomialFeatures
|
7 |
+
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def load_data(file):
|
10 |
+
return pd.read_csv(file)
|
11 |
+
|
12 |
+
def plot_data(data, x_values, y_values, model=None, prediction=None):
|
13 |
+
plt.scatter(x_values, y_values, label='Data')
|
14 |
+
if model is not None and prediction is not None:
|
15 |
+
plt.plot(x_values, prediction, color='red', label='Model')
|
16 |
+
plt.xlabel('Index')
|
17 |
+
plt.ylabel('Value')
|
18 |
+
plt.legend()
|
19 |
+
plt.show()
|
20 |
+
|
21 |
+
def fit_model(data, model_type, x_values, y_values):
|
22 |
+
if model_type == 'Linear Regression':
|
23 |
+
model = LinearRegression()
|
24 |
+
x_values = x_values.reshape(-1, 1)
|
25 |
+
model.fit(x_values, y_values)
|
26 |
+
prediction = model.predict(x_values)
|
27 |
+
equation = f'y = {{model.coef_[0]:.4f}}x + {{model.intercept_:.4f}}'
|
28 |
+
elif model_type == 'Polynomial Regression':
|
29 |
+
polynomial_features = PolynomialFeatures(degree=2)
|
30 |
+
x_values_poly = polynomial_features.fit_transform(x_values.reshape(-1, 1))
|
31 |
+
model = LinearRegression()
|
32 |
+
model.fit(x_values_poly, y_values)
|
33 |
+
prediction = model.predict(x_values_poly)
|
34 |
+
equation = 'Polynomial equation (degree 2)'
|
35 |
+
else:
|
36 |
+
model = None
|
37 |
+
prediction = None
|
38 |
+
equation = "No model selected"
|
39 |
+
return model, prediction, equation
|
40 |
+
|
41 |
+
def app():
|
42 |
+
st.title('RGB and HSV Analysis and Prediction')
|
43 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
44 |
+
|
45 |
+
if uploaded_file is not None:
|
46 |
+
data = load_data(uploaded_file)
|
47 |
+
st.dataframe(data.head())
|
48 |
+
|
49 |
+
# Selecting R, G, B, H, S, V
|
50 |
+
color_component = st.selectbox("Select color component", ['R', 'G', 'B', 'H', 'S', 'V'])
|
51 |
+
st.write(f"Selected component: {{color_component}}")
|
52 |
+
selected_data = data[color_component].values
|
53 |
+
|
54 |
+
# Selecting regression model
|
55 |
+
regression_model = st.selectbox("Select a regression model", ["None", "Linear Regression", "Polynomial Regression"])
|
56 |
+
|
57 |
+
x_values = np.arange(len(selected_data))
|
58 |
+
y_values = selected_data
|
59 |
+
|
60 |
+
# Fitting the selected model
|
61 |
+
model, prediction, equation = fit_model(data, regression_model, x_values, y_values)
|
62 |
+
st.write(f"Equation: {{equation}}")
|
63 |
+
|
64 |
+
# Plotting the data and model
|
65 |
+
plot_data(data, x_values, y_values, model, prediction)
|
66 |
+
|
67 |
+
# Running the app (uncomment this line to run the app locally)
|
68 |
+
# app()
|