Update app.py
Browse files
app.py
CHANGED
@@ -2,12 +2,6 @@
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
5 |
-
import numpy as np
|
6 |
-
from sklearn.linear_model import LinearRegression
|
7 |
-
from sklearn.preprocessing import PolynomialFeatures
|
8 |
-
from sklearn.pipeline import make_pipeline
|
9 |
-
from sklearn.svm import SVR
|
10 |
-
from sklearn.ensemble import RandomForestRegressor
|
11 |
|
12 |
st.title("Webcam Color Detection Charting")
|
13 |
|
@@ -27,15 +21,6 @@ time_frame_options = [
|
|
27 |
]
|
28 |
time_frame = st.selectbox("Data Time Frame", time_frame_options)
|
29 |
|
30 |
-
regression_options = [
|
31 |
-
"None",
|
32 |
-
"Linear Regression",
|
33 |
-
"Polynomial Regression",
|
34 |
-
"SVR (Support Vector Regression)",
|
35 |
-
"Random Forest Regression",
|
36 |
-
]
|
37 |
-
regression_type = st.selectbox("Regression Analysis Type", regression_options)
|
38 |
-
|
39 |
if uploaded_file is not None:
|
40 |
# Read CSV file
|
41 |
data = pd.read_csv(uploaded_file)
|
@@ -57,59 +42,13 @@ if uploaded_file is not None:
|
|
57 |
data.set_index('timestamp', inplace=True)
|
58 |
data = data.resample(f"{seconds[time_frame]}S").mean().dropna().reset_index()
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
# RGB chart
|
64 |
-
axes[0].plot(data['R'], 'r', label='R')
|
65 |
-
axes[0].plot(data['G'], 'g', label='G')
|
66 |
-
axes[0].plot(data['B'], 'b', label='B')
|
67 |
-
|
68 |
-
# HSV chart
|
69 |
-
axes[1].plot(data['H'], 'r', label='H')
|
70 |
-
axes[1].plot(data['S'], 'g', label='S')
|
71 |
-
axes[1].plot(data['V'], 'b', label='V')
|
72 |
-
|
73 |
-
axes[0].legend(loc='upper right')
|
74 |
-
axes[0].set_title('RGB Values')
|
75 |
-
axes[1].legend(loc='upper right')
|
76 |
-
axes[1].set_title('HSV Values')
|
77 |
-
|
78 |
-
# Perform regression analysis if selected
|
79 |
-
if regression_type != "None":
|
80 |
-
X = np.arange(len(data)).reshape(-1, 1)
|
81 |
-
|
82 |
-
# Linear Regression
|
83 |
-
if regression_type == "Linear Regression":
|
84 |
-
model = LinearRegression()
|
85 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
86 |
-
model.fit(X, data[color])
|
87 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
88 |
-
st.write(f"{color}: y = {model.coef_[0]} * x + {model.intercept_}")
|
89 |
-
|
90 |
-
# Polynomial Regression
|
91 |
-
elif regression_type == "Polynomial Regression":
|
92 |
-
polynomial_features = PolynomialFeatures(degree=2)
|
93 |
-
model = make_pipeline(polynomial_features, LinearRegression())
|
94 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
95 |
-
model.fit(X, data[color])
|
96 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
97 |
-
st.write("Polynomial regression equation is not easily representable.")
|
98 |
-
|
99 |
-
# SVR (Support Vector Regression)
|
100 |
-
elif regression_type == "SVR (Support Vector Regression)":
|
101 |
-
model = SVR()
|
102 |
-
for color, code in zip(['R', 'G', 'B'], ['r', 'g', 'b']):
|
103 |
-
model.fit(X, data[color])
|
104 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
105 |
-
st.write("SVR equation is not easily representable.")
|
106 |
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
model.fit(X, data[color])
|
112 |
-
axes[0].plot(X, model.predict(X), f'{code}--')
|
113 |
-
st.write("Random Forest equation is not easily representable.")
|
114 |
|
|
|
115 |
st.pyplot(fig)
|
|
|
2 |
import streamlit as st
|
3 |
import pandas as pd
|
4 |
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
st.title("Webcam Color Detection Charting")
|
7 |
|
|
|
21 |
]
|
22 |
time_frame = st.selectbox("Data Time Frame", time_frame_options)
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
if uploaded_file is not None:
|
25 |
# Read CSV file
|
26 |
data = pd.read_csv(uploaded_file)
|
|
|
42 |
data.set_index('timestamp', inplace=True)
|
43 |
data = data.resample(f"{seconds[time_frame]}S").mean().dropna().reset_index()
|
44 |
|
45 |
+
# Let the user select the columns
|
46 |
+
selected_columns = st.multiselect("Select Columns", options=['R', 'G', 'B', 'H', 'S', 'V'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Create charts based on selected columns
|
49 |
+
fig, ax = plt.subplots(figsize=(10, 5))
|
50 |
+
for col in selected_columns:
|
51 |
+
ax.plot(data[col], label=col)
|
|
|
|
|
|
|
52 |
|
53 |
+
ax.legend(loc='upper left')
|
54 |
st.pyplot(fig)
|