Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
# ํ์ผ ์
๋ก๋
|
6 |
+
uploaded_file = st.file_uploader("Choose a CSV file", type="csv")
|
7 |
+
|
8 |
+
# ๋ฐ์ดํฐ ํ์ ํ๋ ์ ์ ํ
|
9 |
+
time_frame_options = ["1๋ถ", "5๋ถ", "10๋ถ", "30๋ถ", "60๋ถ"]
|
10 |
+
time_frame = st.selectbox("๋ฐ์ดํฐ ํ์ ํ๋ ์ ์ ํ:", time_frame_options)
|
11 |
+
time_frame_map = {"1๋ถ": 1, "5๋ถ": 5, "10๋ถ": 10, "30๋ถ": 30, "60๋ถ": 60}
|
12 |
+
time_frame_minutes = time_frame_map[time_frame]
|
13 |
+
|
14 |
+
if uploaded_file:
|
15 |
+
# CSV ํ์ผ ์ฝ๊ธฐ
|
16 |
+
df = pd.read_csv(uploaded_file)
|
17 |
+
|
18 |
+
# timestamp๋ฅผ datetime ํํ๋ก ๋ณํ
|
19 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'], unit='ms')
|
20 |
+
|
21 |
+
# ์ ํ๋ ํ์ ํ๋ ์์ผ๋ก ๋ฆฌ์ํ๋ง
|
22 |
+
df_resampled = df.resample(f'{time_frame_minutes}T', on='timestamp').mean()
|
23 |
+
|
24 |
+
# RGB ๊ทธ๋ํ
|
25 |
+
plt.figure(figsize=(15, 5))
|
26 |
+
plt.plot(df_resampled['R'], label='R')
|
27 |
+
plt.plot(df_resampled['G'], label='G')
|
28 |
+
plt.plot(df_resampled['B'], label='B')
|
29 |
+
plt.title('RGB Color Variation')
|
30 |
+
plt.xlabel('Time')
|
31 |
+
plt.ylabel('Value')
|
32 |
+
plt.legend()
|
33 |
+
st.pyplot()
|
34 |
+
|
35 |
+
# HSV ๊ทธ๋ํ
|
36 |
+
plt.figure(figsize=(15, 5))
|
37 |
+
plt.plot(df_resampled['H'], label='H')
|
38 |
+
plt.plot(df_resampled['S'], label='S')
|
39 |
+
plt.plot(df_resampled['V'], label='V')
|
40 |
+
plt.title('HSV Color Variation')
|
41 |
+
plt.xlabel('Time')
|
42 |
+
plt.ylabel('Value')
|
43 |
+
plt.legend()
|
44 |
+
st.pyplot()
|