k-means_sim / app.py
JUNGU's picture
Update app.py
67ec54d
raw
history blame
2.04 kB
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
def generate_data(n_samples=300):
data, _ = make_blobs(n_samples=n_samples, centers=4, cluster_std=1.0, random_state=42)
return data
def plot_clusters(data, k):
kmeans = KMeans(n_clusters=k)
y_kmeans = kmeans.fit_predict(data)
plt.scatter(data[:, 0], data[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='X')
plt.title(f'K-means Clustering with k={k}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt_fig = plt # ์ง€์—ญ ๋ณ€์ˆ˜๋ช… ๋ณ€๊ฒฝ
return plt_fig
def main():
st.title("K-means Clustering Simulator")
st.write("This is a simple simulator to visualize how k-means clustering works.")
# ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐ ์ถ”๊ฐ€
if 'data' not in st.session_state:
st.session_state.data = np.array([]).reshape(0, 2) # ์ดˆ๊ธฐ ๋ฐ์ดํ„ฐ๋Š” ๋น„์–ด ์žˆ๊ฒŒ ์„ค์ • -> ์˜ค๋ฅ˜์ˆ˜์ •
add_point = st.button("Add Random Data Point")
if add_point:
new_point, _ = make_blobs(n_samples=1, centers=1, cluster_std=1.0)
st.session_state.data = np.vstack([st.session_state.data, new_point])
x_coord = st.number_input("X Coordinate", value=0.0)
y_coord = st.number_input("Y Coordinate", value=0.0)
add_custom_point = st.button("Add Custom Data Point")
if add_custom_point:
st.session_state.data = np.vstack([st.session_state.data, [x_coord, y_coord]])
st.write("Here is the data:")
plt.scatter(st.session_state.data[:, 0], st.session_state.data[:, 1], s=50, cmap='viridis')
st.pyplot() # plt.show() ๋Œ€์‹  ์ด๋ฅผ ์‚ฌ์šฉ
k = st.slider("Select the number of clusters (k)", 1, 10, 4)
st.write(f"You selected k={k}")
plt_fig = plot_clusters(st.session_state.data, k)
st.pyplot(plt_fig) # plt.show() ๋Œ€์‹  ์ด๋ฅผ ์‚ฌ์šฉ
if __name__ == '__main__':
main()