k-means_sim / app.py
JUNGU's picture
Create app.py
d992ae8
raw
history blame
1.3 kB
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs
from sklearn.cluster import KMeans
def generate_data(n_samples=300):
data, _ = make_blobs(n_samples=n_samples, centers=4, cluster_std=1.0, random_state=42)
return data
def plot_clusters(data, k):
kmeans = KMeans(n_clusters=k)
y_kmeans = kmeans.fit_predict(data)
plt.scatter(data[:, 0], data[:, 1], c=y_kmeans, s=50, cmap='viridis')
centers = kmeans.cluster_centers_
plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='X')
plt.title(f'K-means Clustering with k={k}')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
return plt
def main():
st.title("K-means Clustering Simulator")
st.write("This is a simple simulator to visualize how k-means clustering works.")
data = generate_data()
st.write("Here is the sample data without clustering:")
plt.scatter(data[:, 0], data[:, 1], s=50, cmap='viridis')
plt.title('Sample Data')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
st.pyplot()
k = st.slider("Select the number of clusters (k)", 1, 10, 4)
st.write(f"You selected k={k}")
plt = plot_clusters(data, k)
st.pyplot()
if __name__ == '__main__':
main()