import streamlit as st import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_blobs from sklearn.cluster import KMeans def generate_data(n_samples=300): data, _ = make_blobs(n_samples=n_samples, centers=4, cluster_std=1.0, random_state=42) return data def plot_clusters(data, k): kmeans = KMeans(n_clusters=k) y_kmeans = kmeans.fit_predict(data) plt.scatter(data[:, 0], data[:, 1], c=y_kmeans, s=50, cmap='viridis') centers = kmeans.cluster_centers_ plt.scatter(centers[:, 0], centers[:, 1], c='red', s=200, alpha=0.75, marker='X') plt.title(f'K-means Clustering with k={k}') plt.xlabel('Feature 1') plt.ylabel('Feature 2') plt_fig = plt return plt_fig def main(): st.title("K-means Clustering Simulator") st.write("This is a simple simulator to visualize how k-means clustering works.") # 데이터 생성 및 추가 if 'data' not in st.session_state: st.session_state.data = np.array([]).reshape(0, 2) add_point = st.button("Add Random Data Point") if add_point: new_point = np.array([[np.random.uniform(0, 100), np.random.uniform(0, 100)]]) st.session_state.data = np.vstack([st.session_state.data, new_point]) x_coord = st.number_input("X Coordinate", min_value=0.0, max_value=100.0, value=50.0) y_coord = st.number_input("Y Coordinate", min_value=0.0, max_value=100.0, value=50.0) add_custom_point = st.button("Add Custom Data Point") if add_custom_point: st.session_state.data = np.vstack([st.session_state.data, [x_coord, y_coord]]) st.write("Here is the data:") plt.scatter(st.session_state.data[:, 0], st.session_state.data[:, 1], s=50, cmap='viridis') st.pyplot() k = st.slider("Select the number of clusters (k)", 1, 10, 4) st.write(f"You selected k={k}") plt_fig = plot_clusters(st.session_state.data, k) st.pyplot(plt_fig) if __name__ == '__main__': main()