k-meansim / app.py
JUNGU's picture
Update app.py
f33edaa
raw
history blame
2.57 kB
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# ๋ฐ์ดํ„ฐ ์ƒ์„ฑ
np.random.seed(42)
num_samples = 30
traffic_centers = [(20, 20), (80, 80)]
nature_centers = [(0, 80), (80, 0)]
population_centers = [(0, 0), (50, 50), (100, 100)]
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
def apply_kmeans(data, k):
kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
centroids = kmeans.cluster_centers_
labels = kmeans.labels_
return centroids, labels
def main():
st.title("K-means Clustering simulator \n k-means Clustering ์‹œ๋ฎฌ๋ ˆ์ด์…˜์„ ์ œ๊ณตํ•ฉ๋‹ˆ๋‹ค.")
# Global variables declaration
global traffic_df, nature_df, population_df
if st.button("Initialize Datasets"):
traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
population_df = pd.DataFrame(population_data, columns=["x", "y"])
datasets = st.multiselect("Choose datasets:", ["๊ตํ†ต์ ‘๊ทผ์„ฑ", "์ž์—ฐํ™˜๊ฒฝ", "์ธ๊ตฌ๋ฐ€์ง‘๋„"])
k_value = st.slider("Select k value:", 1, 10)
dataset_mapping = {
"๊ตํ†ต์ ‘๊ทผ์„ฑ": (traffic_df, 'o')
"์ž์—ฐํ™˜๊ฒฝ": (nature_df, 'x')
"์ธ๊ตฌ๋ฐ€์ง‘๋„": (population_df, 'โ–ฒ')
}
fig, ax = plt.subplots(figsize=(8, 8))
for dataset_name in datasets:
data, marker = dataset_mapping[dataset_name]
centroids, labels = apply_kmeans(data.values, k_value)
ax.scatter(data['x'], data['y'], c=labels, cmap='viridis', marker=marker, label=dataset_name)
ax.scatter(centroids[:, 0], centroids[:, 1], s=200, c='red', marker='X')
ax.set_xlim(0, 100)
ax.set_ylim(0, 100)
ax.set_title(f"K-means clustering result (k={k_value})")
ax.legend()
st.pyplot(fig)
if __name__ == "__main__":
main()