Update app.py
Browse files
app.py
CHANGED
@@ -27,13 +27,15 @@ def apply_kmeans(data, k):
|
|
27 |
|
28 |
def generate_data():
|
29 |
global traffic_df, nature_df, population_df
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
33 |
|
34 |
-
traffic_df = pd.DataFrame(
|
35 |
-
nature_df = pd.DataFrame(
|
36 |
-
population_df = pd.DataFrame(
|
37 |
|
38 |
def main():
|
39 |
st.title("K-means Clustering Simulator")
|
@@ -49,7 +51,7 @@ def main():
|
|
49 |
"μΈκ΅¬λ°μ§λ": population_df
|
50 |
}
|
51 |
|
52 |
-
#
|
53 |
if datasets:
|
54 |
combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
|
55 |
|
|
|
27 |
|
28 |
def generate_data():
|
29 |
global traffic_df, nature_df, population_df
|
30 |
+
|
31 |
+
# λλ€λ°μ΄ν° μμ±
|
32 |
+
traffic_data = np.random.uniform(0, 100, (num_samples, 2))
|
33 |
+
nature_data = np.random.uniform(0, 100, (num_samples, 2))
|
34 |
+
population_data = np.random.uniform(0, 100, (num_samples, 2))
|
35 |
|
36 |
+
traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
|
37 |
+
nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
|
38 |
+
population_df = pd.DataFrame(population_data, columns=["x", "y"])
|
39 |
|
40 |
def main():
|
41 |
st.title("K-means Clustering Simulator")
|
|
|
51 |
"μΈκ΅¬λ°μ§λ": population_df
|
52 |
}
|
53 |
|
54 |
+
# μ무 κ°λ μμλ
|
55 |
if datasets:
|
56 |
combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
|
57 |
|