JUNGU commited on
Commit
126f1a6
ยท
1 Parent(s): 77631e1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -21
app.py CHANGED
@@ -4,19 +4,20 @@ import numpy as np
4
  import matplotlib.pyplot as plt
5
  from sklearn.cluster import KMeans
6
 
7
- # Generate the datasets
8
  np.random.seed(42)
9
  num_samples = 30
 
 
 
10
 
11
  traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
12
  nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
13
  population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
14
 
15
- traffic_df_uniform = pd.DataFrame(traffic_data, columns=["x", "y"])
16
- nature_df_uniform = pd.DataFrame(nature_data, columns=["x", "y"])
17
- population_df_uniform = pd.DataFrame(population_data, columns=["x", "y"])
18
-
19
- traffic_df_uniform.head(), nature_df_uniform.head(), population_df_uniform.head()
20
 
21
  def apply_kmeans(data, k):
22
  kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
@@ -24,23 +25,18 @@ def apply_kmeans(data, k):
24
  labels = kmeans.labels_
25
  return centroids, labels
26
 
27
- def generate_data():
28
- global traffic_df, nature_df, population_df
29
-
30
- # ๋žœ๋ค๋ฐ์ดํ„ฐ ์ƒ์„ฑ
31
- traffic_data = np.random.uniform(0, 100, (num_samples, 2))
32
- nature_data = np.random.uniform(0, 100, (num_samples, 2))
33
- population_data = np.random.uniform(0, 100, (num_samples, 2))
34
-
35
- traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
36
- nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
37
- population_df = pd.DataFrame(population_data, columns=["x", "y"])
38
-
39
  def main():
40
  st.title("K-means Clustering Simulator")
41
 
42
  if st.button("Initialize Datasets"):
43
- generate_data()
 
 
 
 
 
 
 
44
  datasets = st.multiselect("Choose datasets:", ["๊ตํ†ต์ ‘๊ทผ์„ฑ", "์ž์—ฐํ™˜๊ฒฝ", "์ธ๊ตฌ๋ฐ€์ง‘๋„"])
45
  k_value = st.slider("Select k value:", 1, 10)
46
 
@@ -50,7 +46,6 @@ def main():
50
  "์ธ๊ตฌ๋ฐ€์ง‘๋„": population_df
51
  }
52
 
53
- # ์•„๋ฌด ๊ฐ’๋„ ์—†์„๋•Œ
54
  if datasets:
55
  combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
56
 
@@ -67,4 +62,3 @@ def main():
67
 
68
  if __name__ == "__main__":
69
  main()
70
-
 
4
  import matplotlib.pyplot as plt
5
  from sklearn.cluster import KMeans
6
 
7
+ # Data Generation
8
  np.random.seed(42)
9
  num_samples = 30
10
+ traffic_centers = [(20, 20), (80, 80)]
11
+ nature_centers = [(0, 80), (80, 0)]
12
+ population_centers = [(0, 0), (50, 50), (100, 100)]
13
 
14
  traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
15
  nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
16
  population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
17
 
18
+ traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
19
+ nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
20
+ population_df = pd.DataFrame(population_data, columns=["x", "y"])
 
 
21
 
22
  def apply_kmeans(data, k):
23
  kmeans = KMeans(n_clusters=k, random_state=42).fit(data)
 
25
  labels = kmeans.labels_
26
  return centroids, labels
27
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  def main():
29
  st.title("K-means Clustering Simulator")
30
 
31
  if st.button("Initialize Datasets"):
32
+ traffic_data = np.random.uniform(0, 100, (num_samples * len(traffic_centers), 2))
33
+ nature_data = np.random.uniform(0, 100, (num_samples * len(nature_centers), 2))
34
+ population_data = np.random.uniform(0, 100, (num_samples * len(population_centers), 2))
35
+
36
+ traffic_df = pd.DataFrame(traffic_data, columns=["x", "y"])
37
+ nature_df = pd.DataFrame(nature_data, columns=["x", "y"])
38
+ population_df = pd.DataFrame(population_data, columns=["x", "y"])
39
+
40
  datasets = st.multiselect("Choose datasets:", ["๊ตํ†ต์ ‘๊ทผ์„ฑ", "์ž์—ฐํ™˜๊ฒฝ", "์ธ๊ตฌ๋ฐ€์ง‘๋„"])
41
  k_value = st.slider("Select k value:", 1, 10)
42
 
 
46
  "์ธ๊ตฌ๋ฐ€์ง‘๋„": population_df
47
  }
48
 
 
49
  if datasets:
50
  combined_data = pd.concat([dataset_mapping[dataset_name] for dataset_name in datasets])
51
 
 
62
 
63
  if __name__ == "__main__":
64
  main()